
a paper by Michal Kolesár & Mikkel Plagborg-Møller (Princeton) 

Dynamic Causal Effects in a Nonlinear World 

 

The Good, The Bad & The Ugly 
January 4, 2025 



Impulse responses in a nonlinear world

• Impulse response: dynamic causal effect of shock (policy/fundamental) on outcome.

• Macro modelers and policy-makers think nonlinearities are essential.

• Thresholds/regimes, occasionally binding constraints, kinks, asymmetries. . .

• . . . but the most popular impulse response estimators are motivated by linear models:
SVAR, local projection. Are they useful in a nonlinear world?
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This paper

1 Good news: LP/VAR on observed shock/proxy delivers positively weighted avg of causal
effects regardless of nonlinearity.

• Weight function easily estimable by regression. We give empirical examples.

• In contrast, nonlinear estimators can get sign of marginal effects wrong under misspecification.

2 Bad/ugly news: ID of latent shocks via heteroskedasticity or non-Gaussianity highly
sensitive to linearity assumption.

• Lesson: hard work of directly measuring shocks/proxies pays off.

3 Building block: new results on identification of weighted average marginal effects.
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Nonparametric model

• General nonlinear model for outcome Y given shock of interest X and nuisance shocks U:

Yt+h = ψh(Xt ,Uh,t+h), Xt ⊥⊥ Uh,t+h.

• Structural function ψh captures all direct and indirect effects of X .

• Assume for now X is cts’ly distributed. General case later (e.g., discrete/mixed).

• Example: In endogenous regime switching AR(1) model

Yt = ρt−1Yt−1 + τXt + νt , with ρt−1 ≡ ρ0 + (ρ1 − ρ0)1{Xt−1 + ξt−1 ≤ 0},

ψh also takes into account effect of Xt on Yt+h via future regimes ρt+ℓ.
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Causal effects

Yt+h = ψh(Xt ,Uh,t+h), Xt ⊥⊥ Uh,t+h

• Average structural function:

Ψh(x) ≡ E [ψh(x ,Uh,t+h)], x ∈ R.

• Object of interest is average marginal effect:

θh(ω) ≡
∫
ω(x)Ψ′

h(x) dx .

• Most direct interpretation of Ψ′
h(x): effect of infinitesimal shock x 7→ x + δ.

• ω(·) weights baseline values of shock. Matters in nonlinear models!
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Causal effects: graphical example

x

Ψh(x)

• Avg marg’l effect: θh(ω) =
∫
ω(x)Ψ′

h(x) dx , weighted avg of heterogeneous slopes.

• Nonnegative weights ω(·) ≥ 0 desirable, since rules out sign reversal: θh(ω) < 0 despite
Ψh monotonically increasing. Would be concerning for model calibration/validation.
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Identification with observed shocks

• If we observe X , then ASF is identified: Gouriéroux & Lee (2023); Gonçalves et al. (2024)

Ψh(x) ≡ E [ψh(x ,Uh,t+h)] = E [ψh(x ,Uh,t+h) | Xt = x ] = E [Yt+h | Xt = x ] ≡ gh(x).

But fully nonparametric estimation of gh is challenging in typical macro data sets.

• Instead, we study what is estimated when running linear local projection

Yt+h = β̂hXt + γ̂′
hWt + residualh,t+h.

• Assuming Xt is a shock, so Cov(Xt ,Wt) = 0, large-sample estimand equals

βh ≡ Cov(gh(Xt),Xt)
Var(Xt)

.

• SVAR shares exact same estimand given sufficient lags. P-M & Wolf (2021)
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Robustness of linear procedures

• Proposition (Yitzhaki, 1996; Rambachan & Shephard, 2021): Linear LP/VAR estimate useful
causal summary, regardless of extent of nonlinearities.

βh =
∫
ωX (x)g ′

h(x) dx , where ωX (x) ≡ Cov(1{Xt ≥ x},Xt)
Var(Xt)

.

• Properties of weight function:

i Convex: ωX (·) ≥ 0,
∫
ωX (x) dx = 1.

ii Hump-shaped: increasing from 0 to its max for x ≤ E [Xt ], then decreasing back to 0.

iii Depends only on marginal distribution of Xt , not on (Yt+h | Xt) or h.

• Our regularity conditions weaker than literature; just require well-defined βh and integral.

• Allow non-smooth structural fct ψh, general X distr’n (potentially unbounded support).
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Estimating the weight function

βh =
∫
ωX (x)g ′

h(x) dx , ωX (x) ≡ Cov(1{Xt ≥ x},Xt)/Var(Xt)︸ ︷︷ ︸
regression coefficient

• ω̂X (x): slope in regression of 1(Xt ≥ x) on Xt .

• Weights transform empirical CDF of shocks into interpretable units.
• Visualize asymmetry, outliers, etc.

• Special case: if Xt is Gaussian, then ωX (x) = density of Xt . Yitzhaki (1996)
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Sensitivity of nonlinear parametric regression

• If we care about characterizing nonlinearities, we should model them.

• But if we only care about average marginal effects, nonlinear modeling can be
counterproductive. Even if variables have limited support, e.g., ZLB! Angrist (2001)

• Illustrative example: (population) LP with quadratic term

Yt+h = β0,h + β1,hXt + β2,hX 2
t + residualh,t+h,

with estimated first derivative β̄h(x) ≡ β1,h + 2β2,hx .

• Proposition: If Xt ∼ N(0, 1),

β̄h(x) = E [(1 + Xtx)g ′
h(Xt)] = E [g ′

h(Xt)] + xE [g ′′
h (Xt)].

• Can easily get sign reversals due to negative weights!
11



Covariates

• Suppose we relax shock independence to “selection on observables”:

Xt ⊥⊥ Uh,t+h | Wt .

• Nonparametric version of recursive/Cholesky identification. Angrist & Kuersteiner (2011)

• Then conditional ASF is identified:

gh(x ,w) ≡ E [Yt+h | Xt = x ,Wt = w] = E [φh(x ,Uh,t) | Wt = w] ≡ Ψh(x ,w).

• LP with controls
Yt+h = β̂hXt + γ̂′

hWt + residualh,t+h

estimates weighted avg of marginal effects ∂Ψh(x ,w)/∂x .

• But weights need not be positive if “propensity score” π∗(w) ≡ E [Xt | Wt = w] is
nonlinear (more in paper). Lesson: check sensitivity wrt. functional form of controls.
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Robustness of linear proxy procedures

• Instead of observing Xt directly, assume we observe a valid proxy Zt satisfying

E [Yt+h | Xt ,Zt ] = E [Yt+h | Xt ] ≡ gh(x).

• Estimand from “reduced-form” LP/VAR of outcome on proxy:

β̃h ≡ Cov(ζ(Xt), gh(Xt))
Var(Zt)

, where ζ(x) ≡ E [Zt | Xt = x ].

• Proposition: Proxy identifies weighted sum of marginal effects.

β̃h =
∫
ω̃Z (x)g ′

h(x) dx , where ω̃Z (x) ≡ Cov(1{Xt ≥ x}, ζ(Xt))
Var(Zt)

.

• Weights depend only on distr’n of (Xt ,Zt), not (Yt+h | Xt).
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Monotonicity

β̃h =
∫
ω̃Z (x)g ′

h(x) dx , ω̃Z (x) ≡ Cov(1{Xt ≥ x}, ζ(Xt))/Var(Zt)

• ω̃Z (·) ≥ 0 iff. “monotonicity on average”:

E [Zt | Xt ≥ x ] ≥ E [Zt | Xt < x ] for all x .

• Implied by monotonicity of ζ(x) ≡ E [Zt | Xt = x ]. Also implies ω̃Z (·) is hump-shaped.

• Lesson: proxies should be approximately monotonically related to shock of interest, but
relationship need not be close to linear.

• E.g., “narrative sign restriction”: Zt = 1{Xt ≥ c2} −1{Xt ≤ −c1}. Antolín-D & Rubio-R (2018)

• In paper: our monotonicity condition is much weaker than “uniform monotonicity” cond’n
required when Xt is endogenous. Imbens & Angrist (1994); Angrist, Graddy & Imbens (2000)
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Identification via heteroskedasticity
• When shocks/proxies are not available, popular to identify latent shock X via restrictions

on shock heterosk’y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)

• We consider nonparametric analogue of this approach to show sensitivity to linearity.

• Observe (Y,D) from nonparametric factor model (drop time subscripts):

Y = ψ(X ,U), (D,X ) ⊥⊥ U.

• D: regime. Proxy for X , but does not affect mean, only variance and higher moments:

E [X | D] = 0, X ⊥̸⊥D.

• Linear ID: If ψ(x ,u) = θx + γ(u) and θ1 Cov(X 2,D) ̸= 0, then

Cov(Y,Z )
Cov(Y1,Z ) = θ

θ1
, where Z ≡ (D − E [D])Y1. Rigobon & Sack (2004); Lewbel (2012)

15



Identification via heteroskedasticity
• When shocks/proxies are not available, popular to identify latent shock X via restrictions

on shock heterosk’y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)

• We consider nonparametric analogue of this approach to show sensitivity to linearity.

• Observe (Y,D) from nonparametric factor model (drop time subscripts):

Y = ψ(X ,U), (D,X ) ⊥⊥ U.

• D: regime. Proxy for X , but does not affect mean, only variance and higher moments:

E [X | D] = 0, X ⊥̸⊥D.

• Linear ID: If ψ(x ,u) = θx + γ(u) and θ1 Cov(X 2,D) ̸= 0, then

Cov(Y,Z )
Cov(Y1,Z ) = θ

θ1
, where Z ≡ (D − E [D])Y1. Rigobon & Sack (2004); Lewbel (2012)

15



ID via heteroskedasticity: large nonparametric identified set

• Proposition: Suppose we observe (Y,D) from the nonparametric model

Y = ψ(X ,U), X = σ(D)W , W ⊥⊥ D ⊥⊥ U,

where σ(·) ≥ 0 is known, the distr’n of W is symmetric around 0 and known, and the
number m ≥ 2 of shocks is known.
Then the identified set for ψ(x ,u) contains a function that is symmetric around 0 in x .

• Can never rule out zero causal effect,
∫
ω(x)∂E [ψ(x ,U)]

∂x dx = 0, for symmetric ω!

• Intuition: D shifts only scale of X , not location =⇒ can’t construct proxy Z that satisfies
monotonicity requirement, without imposing fct’l form as’ns on ψ.

• Known issue in linear ID: shock variance depends on regime, yet require coef’s to be constant.
In nonparametric context, there’s no distinction between “shock variances” and “coefficients”.
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ID via heteroskedasticity: sensitivity of linear procedures

• Proposition: Assume additively separable model

Y = θ(X ) + γ(U).

Then Rigobon-Sack-Lewbel instrument Z ≡ (D − E [D])Y1 satisfies

Cov(Y,Z ) =
∫
ω̌(x)θ′(x) dx , for weights ω̌(x) that. . .

• . . . can integrate to 0 =⇒ estimate 0 causal effect of X on Yj even if θj(x) is linear!

• . . . can be negative even in favorable case Y1 = X , depending on entire distribution (X | D).

• In non-separable models, we may not estimate any weighted avg of causal effects: if
Y = Xγ(U) with E [γ(U)] = 0, then E [Y | X ] = 0 but Cov(Y,Z ) ̸= 0.

• Silver lining: at least linearity is testable. Power? Rigobon & Sack (2004); Wright (2012)
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Identification via non-Gaussianity

• Recently popular procedure in linear SVAR literature: identify latent shocks by assuming
they are independent and non-Gaussian. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz &
Saikkonen (2017); Lewbel, Schennach & Zhang (2024); Lewis (2024)

• A.k.a. “independent components analysis” (ICA) outside economics. Comon (1994)

• Start from nonparametric factor model, but now we only observe Y (no proxy):

Y = ψ(X ,U), X ⊥⊥ U.

• Linear ID (Darmois-Skitovich theorem):

• Assume ψ(x ,u) = θx + γu, and the shocks (X ,U1, . . . ,Um−1) are independent and
non-Gaussian (except perhaps one).

• Then two linear combinations ς ′Y and ς̃ ′Y of the data can only be independent if they equal
two different shocks (up to sign and scale).
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ID via non-Gaussianity: large nonparametric identified set

Y = ψ(X ,U), X ⊥⊥ U

• Unfortunately, there is no general nonlinear Darmois-Skitovich theorem: the
nonparametric identified set for the above model is huge. Jutten & Karhunen (2003)

• Problem: independence and non-Gaussianity as’ns are vacuous in nonparametric context.

• Can always transform a uniform r.v. into any distribution via the quantile function.

• Can always transform one uniform r.v. into two independent uniforms.

• In particular, we can represent Y = ψ̃(X ) where X ∼ unif([0, 1]) =⇒ can’t rule out that X
drives all the variation in all observed variables!

• Formal results in paper.
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ID via non-Gaussianity: sensitivity of linear procedures

• Easy to construct cases where any linear ICA procedure is inconsistent and the linear
model is unfalsifiable.

• Example: Suppose (X ,U) ∼ N(02×1, I2) and

Y1 ≡ X + U, Y2 ≡ γ(X − U),

where γ(·) is an arbitrary nonlinear fct.

• Interpretation: linear ICA model, but we got transformation of Y2 slightly wrong.

• Y1 ⊥⊥ Y2 =⇒ linear ICA procedure concludes that Y1 = “shock 1” and Y2 = “shock 2”.
Nothing in the data can reject the linear model.

• But X actually only contributes 50% of the variance of Y1.

• Discontinuity: same (asymptotic) bias regardless of how close γ(·) is to linear.
20
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General result on ID of average marginal effects

• How can we identify avg marginal effects for pre-specified weight fct ω?

• Outcome Y , regressor X (arbitrary distribution!), covariates W. Define

g(x ,w) ≡ E [Y | X = x ,W = w].

• If X has gaps in support (e.g., discrete/mixed), extend g to an interval via linear interpolation.

• g ′(x ,w): derivative wrt. x (= g(1,w) − g(0,w) for binary X ).

• Proposition: Under weak regularity conditions, for any α s.t. E [α(X ,W) | W] = 0,

E [α(X ,W)Y ] = E [α(X ,W)g(X ,W)] = E
[∫

ω(x ,W)g ′(x ,W) dx
]
,

where ω(x ,w) ≡ E [1{X ≥ x}α(X ,W) | W = w]. Newey & Stoker (1993)
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Identification of average marginal effects: implications

E [α(X ,W)Y ] = E
[∫

ω(x ,W)g ′(x ,W) dx
]

(†)

• Implies most of the preceding propositions.

• With covariates, can derive representation of estimand from partially linear regression as
weighted avg of marginal effects. (More in paper.)

Y = Xβ + γ(W) + residual, where γ ∈ Γ (potentially nonparametric class).
• X can be discrete/cts/mixed. Special cases: Angrist & Krueger (1999); de Chaisemartin &

D’Haultfœuille (2020); Goodman-Bacon (2021); Goldsmith-Pinkham, Hull & Kolesár (2024)

• For given ω, estimate average marginal effect on RHS of (†) by reverse-engineering Riesz
representer α and reporting the weighted outcome on the LHS of (†).
• α will generally require nonparametric estimation. Recent double-robust/debiased ML

literature suggests combining weighting with outcome modeling. (More in paper.)
22



Outline

1 Nonparametric framework for dynamic causality

2 The Good: observed shocks and proxies

Observed shocks

Proxies

3 The Bad: identification via heteroskedasticity

4 The Ugly: identification via non-Gaussianity

5 Identification of average marginal effects

6 Conclusion



Conclusion

• Hard work of constructing shock measures/proxies pays off: robustness to nonlinearity.

• Report implied causal weight function (Stata code in our GitHub repo).

• Proxies should be approx’ly monotonically related to shocks, but not necessarily linearly.

• If using covariates for identification, check sensitivity wrt. functional form.

• Identification approaches based on latent shocks sensitive to linearity assumption.

• This paper: ID via heterosk’y/non-Gauss’y. Future work: ID via long-run/sign restrictions.

• Nonparametric TE literature has useful lessons for macro, despite our smaller data sets.
Angrist & Kuersteiner (2011); Angrist, Jordà & Kuersteiner (2018); Rambachan & Shephard (2021)
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Appendix
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Causal weight functions: tax shocks
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Causal weight functions: technology shocks
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Causal weight functions: monetary policy shocks
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ID via heteroskedasticity: testable restrictions

• While ID via heteroskedasticity is sensitive to linearity, at least linearity is testable.

• If Y = θX + γ(U) and (D,X ) ⊥⊥ U, then

Var(Y | D = d1) − Var(Y | D = d0) = [Var(X | D = d1) − Var(X | D = d0)]θθ′

should be a rank-1 matrix. Rigobon & Sack (2004); Wright (2012)

• Power against nonlinear alternatives?
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ID via non-Gaussianity: second example of sensitivity

• Example: Only nonlinearity is relationship btw Y2 and U,

Y1 = X + U, Y2 = X + γ(U), X ⊥⊥ U.

• Can choose distr’ns for X and U and a nonlinear fct γ s.t. Y1 ⊥⊥ Y2.

• Then any linear ICA procedure erroneously concludes Y1 = “shock 1”, Y2 = “shock 2”.

• Proof: by Box-Muller transform, with Ũ1 and Ũ2 independent uniforms,

Ỹ1 ≡
√

−2 log Ũ1 cos(2πŨ2) ⊥⊥ Ỹ2 ≡
√

−2 log Ũ1 sin(2πŨ2).

Hence, we can set

Y1 ≡ log Ỹ 2
1 = X + U, Y2 ≡ log Ỹ 2

2 = X + γ(U),

X ≡ log(−2 log Ũ1), U ≡ log cos2(2πŨ2), γ(u) ≡ log (1 − exp(u)) .
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