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Impulse responses in a nonlinear world

® Impulse response: dynamic causal effect of shock (policy/fundamental) on outcome.
® Macro modelers and policy-makers think nonlinearities are essential.

® Thresholds/regimes, occasionally binding constraints, kinks, asymmetries. . .

® .. but the most popular impulse response estimators are motivated by linear models:
SVAR, local projection. Are they useful in a nonlinear world?



This paper

® Good news: LP/VAR on observed shock/proxy delivers positively weighted avg of causal
effects regardless of nonlinearity.

® Weight function easily estimable by regression. We give empirical examples.
® |n contrast, nonlinear estimators can get sign of marginal effects wrong under misspecification.

@® Bad/ugly news: ID of latent shocks via heteroskedasticity or non-Gaussianity highly
sensitive to linearity assumption.

® Lesson: hard work of directly measuring shocks/proxies pays off.

© Building block: new results on identification of weighted average marginal effects.
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Nonparametric model

General nonlinear model for outcome Y given shock of interest X and nuisance shocks U:
Yitrh = Un(Xe; Unegn),  Xe 1L Upepn.
Structural function v, captures all direct and indirect effects of X.

Assume for now X is cts'ly distributed. General case later (e.g., discrete/mixed).

Example: In endogenous regime switching AR(1) model

Ye=pt-1Ye1 +7Xe +ve, with pr1 = po+ (p1 — po) T{Xt—1 + &1 <0},

1y also takes into account effect of X; on Yiip via future regimes p; .



Causal effects

Yerh = Un(Xe, Upeyn),  Xe 1L Up i

® Average structural function:
Vi(x) = E[¢n(x, Unesn)], x €R.
® QObject of interest is average marginal effect:
Op(w) = /w(x)\%(x) dx.
® Most direct interpretation of W} (x): effect of infinitesimal shock x +— x + 4.

® w(-) weights baseline values of shock. Matters in nonlinear models!



Causal effects: graphical example

\Uh(X)




Causal effects: graphical example

\Uh(X)

Vi(x) >0

W (x) =0

* Avg marg'l effect: 0j(w) = [ w(x)W}(x) dx, weighted avg of heterogeneous slopes.



Causal effects: graphical example

\Uh(X)

Vi(x) >0

W (x) =0

* Avg marg'l effect: 0j(w) = [ w(x)W}(x) dx, weighted avg of heterogeneous slopes.

* Nonnegative weights w(-) > 0 desirable, since rules out sign reversal: 6,(w) < 0 despite
W}, monotonically increasing. Would be concerning for model calibration /validation.
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Identification with observed shocks

® |f we observe X, then ASF is identified: Gouriéroux & Lee (2023); Goncalves et al. (2024)
Vi(x) = E[¥n(x, Unen)] = E[on(x, Unen) | Xe = x| = E[Yern | Xe = x] = gn(x).
But fully nonparametric estimation of gy, is challenging in typical macro data sets.
® |nstead, we study what is estimated when running linear local projection
Yith = BhXt + 4, W, + residualp ¢4 p.
e Assuming X; is a shock, so Cov(X:, W;) = 0, large-sample estimand equals

_ Cov(gn(Xt), Xt)
P Var(Xe)

® SVAR shares exact same estimand given sufficient lags. P-M & Wolf (2021)




Robustness of linear procedures
® Proposition (Yitzhaki, 1996; Rambachan & Shephard, 2021): Linear LP/VAR estimate useful
causal summary, regardless of extent of nonlinearities.

Cov(I{X: > x}, X¢)
Var(X;) '

Bh:/wx(x)g;,(x) dx, where wx(x)

® Properties of weight function:
@ Convex: wx(-) >0, [wx(x)dx =1.
@ Hump-shaped: increasing from 0 to its max for x < E[X;], then decreasing back to 0.
@ Depends only on marginal distribution of X;, not on (Yiyp | X;) or h.
e Qur regularity conditions weaker than literature; just require well-defined 3 and integral.

® Allow non-smooth structural fct v, general X distr'n (potentially unbounded support).



Estimating the weight function

Br = [wx(x)gh(x)dx, wx(x)= Cov(L{X: > x}, X¢)/ Var(X¢)

regression coefficient

® Ox(x): slope in regression of 1(X; > x) on X;.
® Weights transform empirical CDF of shocks into interpretable units.

® Visualize asymmetry, outliers, etc.

® Special case: if X; is Gaussian, then wx(x) = density of X;. Yitzhaki (1996)
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Estimating the weight function

Br = [wx(x)gh(x)dx, wx(x)= Cov(L{X: > x}, X¢)/ Var(X¢)

regression coefficient

Government spending shocks from Ramey (2016) handbook chapter:

<

-5 0 5 10 15

=== Blanchard & Perotti (0>0: 0.520)  ====: Fisher & Peters (w>0: 0.497)
==+ Ben Zeev & Pappa (©>0: 0.671) === Ramey (w>0: 0.870)




Sensitivity of nonlinear parametric regression

If we care about characterizing nonlinearities, we should model them.

But if we only care about average marginal effects, nonlinear modeling can be
counterproductive. Even if variables have limited support, e.g., ZLB! Angrist (2001)

[llustrative example: (population) LP with quadratic term

Yitn = Bo,p + B1,nXe + 627hXt2 + residualp ¢4 p,
with estimated first derivative Bh(x) = f1.n + 2082 px.
Proposition: If Xy ~ N(0, 1),

Bn(x) = E[(1 + Xex)gh(Xe)] = Elgh(Xe)] + xE[gf (Xe)]-

® (Can easily get sign reversals due to negative weights!
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Covariates

Suppose we relax shock independence to “selection on observables’:
Xt J_l_ Uh,t+h | Wt'
® Nonparametric version of recursive/Cholesky identification. Angrist & Kuersteiner (2011)

Then conditional ASF is identified:

gh(x, W) = E[Yeqn | Xe = x, We = w| = E[pp(x,Ups) | W = w] = Up(x,w).

LP with controls
Yirh = BaXe + AW, + residualy ¢4 p

estimates weighted avg of marginal effects OWp(x, w)/0x.

But weights need not be positive if “propensity score” 7*(w) = E[X; | W; = w] is

nonlinear (more in paper). Lesson: check sensitivity wrt. functional form of controls.
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Robustness of linear proxy procedures

® |nstead of observing X; directly, assume we observe a valid proxy Z; satisfying
E[Yiin | Xe, Ze] = E[Yien | Xi] = gn(x).
e Estimand from “reduced-form” LP/VAR of outcome on proxy:

5, = Cov(C(Xt), gn(Xt))
h= Var(Z,) ’

where ((x) = E[Z: | X; = x].

® Proposition: Proxy identifies weighted sum of marginal effects.

B = /@z(X)gf’,(X) dx, where &7(x) = Var(Z;)

® Weights depend only on distr'n of (X;, Z;), not (Yiyn | Xi).

Cov(1{X; > x},((Xe))
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Monotonicity

Bn = [ 0z(x)gp(x) dx,  @z(x) = Cov(L{X; = x},((X))/ Var(Z:)
® &z(-) > 0 iff. “monotonicity on average":
E[Z: | Xe > x] > E[Z: | Xt < x] for all x.
® Implied by monotonicity of {(x) = E[Z; | X; = x]|. Also implies &z(+) is hump-shaped.

® | esson: proxies should be approximately monotonically related to shock of interest, but
relationship need not be close to linear.

® E.g., “narrative sign restriction”: Z, = 1{X; > oo} — 1{X; < —c1}. Antolin-D & Rubio-R (2018)

® In paper: our monotonicity condition is much weaker than “uniform monotonicity” cond’'n
required when X; is endogenous. Imbens & Angrist (1994); Angrist, Graddy & Imbens (2000)
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|dentification via heteroskedasticity

When shocks/proxies are not available, popular to identify latent shock X via restrictions
on shock heterosk'y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)

We consider nonparametric analogue of this approach to show sensitivity to linearity.
Observe (Y, D) from nonparametric factor model (drop time subscripts):

Y =v¢(X,U), (D,X) 1 U.
D: regime. Proxy for X, but does not affect mean, only variance and higher moments:

E[X|D] =0, XAD.
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|dentification via heteroskedasticity

When shocks/proxies are not available, popular to identify latent shock X via restrictions
on shock heterosk'y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)

We consider nonparametric analogue of this approach to show sensitivity to linearity.
Observe (Y, D) from nonparametric factor model (drop time subscripts):
Y =v¢(X,U), (D,X) 1 U.
D: regime. Proxy for X, but does not affect mean, only variance and higher moments:
E[X|D]=0, X WUD.
Linear ID: If ¥(x,u) = Ox + ~v(u) and 61 Cov(X?, D) # 0, then

Y, Z 0
(M = (9*1, where Z = (D — E[D])Y1. Rigobon & Sack (2004); Lewbel (2012)
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ID via heteroskedasticity: large nonparametric identified set

® Proposition: Suppose we observe (Y, D) from the nonparametric model
Y=v¢(X,U), X=oD)W, WLILDI U,

where o(-) > 0 is known, the distr'n of W is symmetric around 0 and known, and the
number m > 2 of shocks is known.

Then the identified set for 1(x, u) contains a function that is symmetric around 0 in x.

e Can never rule out zero causal effect, fw(x)w dx = 0, for symmetric w!

® Intuition: D shifts only scale of X, not location = can't construct proxy Z that satisfies
monotonicity requirement, without imposing fct'l form as'ns on .

® Known issue in linear ID: shock variance depends on regime, yet require coef's to be constant.
In nonparametric context, there's no distinction between “shock variances” and “coefficients”.
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ID via heteroskedasticity: sensitivity of linear procedures

Proposition: Assume additively separable model
Y = 0(X) +~(U).
Then Rigobon-Sack-Lewbel instrument Z = (D — E[D]) Y; satisfies
Cov(Y,Z2) = /JJ(X)O’(X) dx, for weights w(x) that...
® . .can integrate to 0 = estimate 0 causal effect of X on Y; even if §;(x) is linear!
® ...can be negative even in favorable case Y; = X, depending on entire distribution (X | D).
In non-separable models, we may not estimate any weighted avg of causal effects: if

Y = Xv(U) with E[y(U)] =0, then E[Y | X] = 0 but Cov(Y,Z) # 0.
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ID via heteroskedasticity: sensitivity of linear procedures

® Proposition: Assume additively separable model
Y = 0(X) +~(U).

Then Rigobon-Sack-Lewbel instrument Z = (D — E[D]) Y; satisfies

Cov(Y,Z2) = /J)(X)O’(X) dx, for weights w(x) that...
® . .can integrate to 0 = estimate 0 causal effect of X on Y; even if §;(x) is linear!
® ...can be negative even in favorable case Y; = X, depending on entire distribution (X | D).

® |n non-separable models, we may not estimate any weighted avg of causal effects: if
Y = Xv(U) with E[y(U)] =0, then E[Y | X] = 0 but Cov(Y,Z) # 0.

e Silver lining: at least linearity is testable. Power? Rigobon & Sack (2004); Wright (2012)
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|dentification via non-Gaussianity

Recently popular procedure in linear SVAR literature: identify latent shocks by assuming
they are independent and non-Gaussian. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz &
Saikkonen (2017); Lewbel, Schennach & Zhang (2024); Lewis (2024)

® A.k.a. “independent components analysis” (ICA) outside economics. Comon (1994)
Start from nonparametric factor model, but now we only observe Y (no proxy):

Y =(X,U), X1 U.
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|dentification via non-Gaussianity

® Recently popular procedure in linear SVAR literature: identify latent shocks by assuming
they are independent and non-Gaussian. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz &
Saikkonen (2017); Lewbel, Schennach & Zhang (2024); Lewis (2024)

® A.k.a. “independent components analysis” (ICA) outside economics. Comon (1994)
e Start from nonparametric factor model, but now we only observe Y (no proxy):
Y =¢(X,U), X 1 U.
e Linear ID (Darmois-Skitovich theorem):

® Assume t(x,u) = Ox + ~yu, and the shocks (X, U, ..., Un_1) are independent and
non-Gaussian (except perhaps one).

® Then two linear combinations ¢’Y and <'Y of the data can only be independent if they equal
two different shocks (up to sign and scale).
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ID via non-Gaussianity: large nonparametric identified set

Y =(X,U), X1 U

e Unfortunately, there is no general nonlinear Darmois-Skitovich theorem: the
nonparametric identified set for the above model is huge. Jutten & Karhunen (2003)

® Problem: independence and non-Gaussianity as'ns are vacuous in nonparametric context.
® (Can always transform a uniform r.v. into any distribution via the quantile function.
® (Can always transform one uniform r.v. into two independent uniforms.

® In particular, we can represent Y = 1)(X) where X ~ unif([0,1]) = can’t rule out that X
drives all the variation in all observed variables!

® Formal results in paper.
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ID via non-Gaussianity: sensitivity of linear procedures

® Easy to construct cases where any linear ICA procedure is inconsistent and the linear
model is unfalsifiable.

e Example: Suppose (X, U) ~ N(02x1,12) and
Y1 =X+ U, YQE’V(X—U),
where () is an arbitrary nonlinear fct.

® |nterpretation: linear ICA model, but we got transformation of Y5 slightly wrong.

Y; AL Y, = linear ICA procedure concludes that Y; = “shock 1" and Y, = “shock 2".
Nothing in the data can reject the linear model.

® But X actually only contributes 50% of the variance of Y;.

® Discontinuity: same (asymptotic) bias regardless of how close +(-) is to linear.
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General result on ID of average marginal effects

® How can we identify avg marginal effects for pre-specified weight fct w?
® Outcome Y, regressor X (arbitrary distribution!), covariates W. Define

glx,w) = E[Y | X =x,W =w].

® |f X has gaps in support (e.g., discrete/mixed), extend g to an interval via linear interpolation.

® g'(x,w): derivative wrt. x (= g(1,w) — g(0, w) for binary X).

® Proposition: Under weak regularity conditions, for any « s.t. E[a(X,W) | W] =0,
Ela(X. W)Y] = Ela(X.W)g(X.W)] = £ | [ (. W)g'(x. W) o]

where  w(x,w) = E[1{X > x}a(X,W) | W = w|. Newey & Stoker (1993)
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Identification of average marginal effects: implications

E[a(X,W)Y] = E [ / w(x, W)g'(x, W) dx ()

® Implies most of the preceding propositions.

e With covariates, can derive representation of estimand from partially linear regression as
weighted avg of marginal effects. (More in paper.)
Y = X3 + (W) + residual, where ~ €T (potentially nonparametric class).

® X can be discrete/cts/mixed. Special cases: Angrist & Krueger (1999); de Chaisemartin &
D’Haultfeeuille (2020); Goodman-Bacon (2021); Goldsmith-Pinkham, Hull & Kolesar (2024)

® For given w, estimate average marginal effect on RHS of (}) by reverse-engineering Riesz
representer « and reporting the weighted outcome on the LHS of (7).

® « will generally require nonparametric estimation. Recent double-robust/debiased ML
literature suggests combining weighting with outcome modeling. (More in paper.)
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Conclusion

® Hard work of constructing shock measures/proxies pays off: robustness to nonlinearity.
® Report implied causal weight function (Stata code in our GitHub repo).
® Proxies should be approx’'ly monotonically related to shocks, but not necessarily linearly.
® |f using covariates for identification, check sensitivity wrt. functional form.

® |dentification approaches based on latent shocks sensitive to linearity assumption.

® This paper: ID via heterosk'y/non-Gauss'y. Future work: ID via long-run/sign restrictions.

® Nonparametric TE literature has useful lessons for macro, despite our smaller data sets.

Angrist & Kuersteiner (2011); Angrist, Jorda & Kuersteiner (2018); Rambachan & Shephard (2021)
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Causal weight functions: tax shocks

Romer & Romer (w>0: 0.286)

Mertens & Ravn (0>0: 0.369)
Leeper et al. (0>0: 0.474)
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Causal weight functions: technology shocks

== Justiniano et al. IST (®>0: 0.480)
==: Fernald (0>0: 0.533)

----- Justiniano et al. TFP (0v>0: 0.517)
=== Francis et al. (0>0: 0.541)
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Causal weight functions: monetary policy shocks

=== Christiano et al. (0>0: 0.249)
= =: Gertler & Karadi (0>0: 0.295)
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ID via heteroskedasticity: testable restrictions

® While ID via heteroskedasticity is sensitive to linearity, at least linearity is testable.
e IfY=6X+~(U) and (D, X) LL U, then
Var(Y | D= dy) — Var(Y | D = dy) = [Var(X | D = d1) — Var(X | D = dp)]06’
should be a rank-1 matrix. Rigobon & Sack (2004); Wright (2012)

® Power against nonlinear alternatives?
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ID via non-Gaussianity: second example of sensitivity

Example: Only nonlinearity is relationship btw Y, and U,

Yi=X+U, Yo=X+~(U), X1 U.

Can choose distr'ns for X and U and a nonlinear fct v s.t. Y1 1L Y5.

Then any linear ICA procedure erroneously concludes Y; = “shock 1”7, Y> = “shock 2".

Proof: by Box-Muller transform, with Ul and []2 independent uniforms,

Yi=1/—2log Uh cos(27rL~/2) 1L Y= \/Tg&lsin(%ﬂ?g).

Hence, we can set
Yi=logV?=X+U, Yr=logV3=X+~(),

X = log(—2log U1), U =logcos®(2nlh), ~(u)=log (1 — exp(u)).

29



	Nonparametric framework for dynamic causality
	The Good: observed shocks and proxies
	Observed shocks
	Proxies

	The Bad: identification via heteroskedasticity
	The Ugly: identification via non-Gaussianity
	Identification of average marginal effects
	Conclusion

