a paper by Michal Kolesár & Mikkel Plagborg-Møller (Princeton)

Dynamic Causal Effects in a Nonlinear World

The Good, The Bad & The Ugly

January 4, 2025

- Impulse response: dynamic causal effect of shock (policy/fundamental) on outcome.
- Macro modelers and policy-makers think nonlinearities are essential.
 - Thresholds/regimes, occasionally binding constraints, kinks, asymmetries...
- ... but the most popular impulse response estimators are motivated by linear models: SVAR, local projection. Are they useful in a nonlinear world?

This paper

- Good news: LP/VAR on observed shock/proxy delivers positively weighted avg of causal effects regardless of nonlinearity.
 - Weight function easily estimable by regression. We give empirical examples.
 - In contrast, nonlinear estimators can get sign of marginal effects wrong under misspecification.
- 2 Bad/ugly news: ID of latent shocks via heteroskedasticity or non-Gaussianity highly sensitive to linearity assumption.
 - Lesson: hard work of directly measuring shocks/proxies pays off.
- **3** Building block: new results on identification of weighted average marginal effects.

Literature

- Average marginal effects and weighted regressions: Yitzhaki (1996); Newey & Stoker (1993); Angrist & Krueger (1999); Angrist (2001); Goldsmith-Pinkham, Hull & Kolesár (2024)
- Semiparametric causal time series: Gallant, Rossi & Tauchen (1993); White (2006); Angrist & Kuersteiner (2011); Angrist, Jordà; Kuersteiner (2018); Kitagawa, Wang & Xu (2023)
- LP under nonlinearity: Rambachan & Shephard (2021); Gonçalves, Herrera, Kilian & Pesavento (2021, 2024); Gouriéroux & Lee (2023); Caravello & Martínez Bruera (2024); Casini & McCloskey (2024)
- Finite-sample properties of LP/VAR: Herbst & Johannsen (2024)

Outline

1 Nonparametric framework for dynamic causality

- 2 The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects
- 6 Conclusion

Nonparametric model

• General nonlinear model for outcome Y given shock of interest X and nuisance shocks U:

$$Y_{t+h} = \psi_h(X_t, \mathbf{U}_{h,t+h}), \quad X_t \perp\!\!\!\perp \mathbf{U}_{h,t+h}.$$

- Structural function ψ_h captures all direct and indirect effects of X.
- Assume for now X is cts'ly distributed. General case later (e.g., discrete/mixed).
- Example: In endogenous regime switching AR(1) model

 $Y_t = \rho_{t-1}Y_{t-1} + \tau X_t + \nu_t, \quad \text{with} \quad \rho_{t-1} \equiv \rho_0 + (\rho_1 - \rho_0) \,\mathbbm{1}\{X_{t-1} + \xi_{t-1} \le 0\},$

 ψ_h also takes into account effect of X_t on Y_{t+h} via future regimes $\rho_{t+\ell}$.

Causal effects

$$Y_{t+h} = \psi_h(X_t, \mathbf{U}_{h,t+h}), \quad X_t \perp\!\!\perp \mathbf{U}_{h,t+h}$$

• Average structural function:

$$\Psi_h(x) \equiv E[\psi_h(x, \mathbf{U}_{h,t+h})], \quad x \in \mathbb{R}.$$

• Object of interest is average marginal effect:

$$heta_h(\omega) \equiv \int \omega(x) \Psi'_h(x) \, dx.$$

- Most direct interpretation of Ψ'_h(x): effect of infinitesimal shock x → x + δ.
- $\omega(\cdot)$ weights baseline values of shock. Matters in nonlinear models!

Causal effects: graphical example

Causal effects: graphical example

• Avg marg'l effect: $\theta_h(\omega) = \int \omega(x) \Psi'_h(x) dx$, weighted avg of heterogeneous slopes.

Causal effects: graphical example

- Avg marg'l effect: $\theta_h(\omega) = \int \omega(x) \Psi'_h(x) dx$, weighted avg of heterogeneous slopes.
- Nonnegative weights $\omega(\cdot) \ge 0$ desirable, since rules out sign reversal: $\theta_h(\omega) < 0$ despite Ψ_h monotonically increasing. Would be concerning for model calibration/validation.

Outline

1 Nonparametric framework for dynamic causality

- ② The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects
- 6 Conclusion

Outline

1 Nonparametric framework for dynamic causality

- ② The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects
- 6 Conclusion

Identification with observed shocks

• If we observe X, then ASF is identified: Gouriéroux & Lee (2023); Gonçalves et al. (2024)

$$\Psi_h(x) \equiv E[\psi_h(x, \mathbf{U}_{h,t+h})] = E[\psi_h(x, \mathbf{U}_{h,t+h}) \mid X_t = x] = E[Y_{t+h} \mid X_t = x] \equiv g_h(x).$$

But fully nonparametric estimation of g_h is challenging in typical macro data sets.

• Instead, we study what is estimated when running linear local projection

$$Y_{t+h} = \hat{\beta}_h X_t + \hat{\gamma}'_h \mathbf{W}_t + \text{residual}_{h,t+h}.$$

• Assuming X_t is a shock, so $Cov(X_t, \mathbf{W}_t) = 0$, large-sample estimand equals

$$\beta_h \equiv \frac{\operatorname{Cov}(g_h(X_t), X_t)}{\operatorname{Var}(X_t)}$$

• SVAR shares exact same estimand given sufficient lags. P-M & Wolf (2021)

• Proposition (Yitzhaki, 1996; Rambachan & Shephard, 2021): Linear LP/VAR estimate useful causal summary, regardless of extent of nonlinearities.

$$eta_h = \int \omega_X(x) g_h'(x) \, dx, \quad ext{where} \quad \omega_X(x) \equiv rac{ ext{Cov}(\mathbbm{1}\{X_t \geq x\}, X_t)}{ ext{Var}(X_t)}.$$

- Properties of weight function:
 - () Convex: $\omega_X(\cdot) \ge 0$, $\int \omega_X(x) dx = 1$.
 - **(i)** Hump-shaped: increasing from 0 to its max for $x \leq E[X_t]$, then decreasing back to 0.
 - **(iii)** Depends only on marginal distribution of X_t , not on $(Y_{t+h} | X_t)$ or h.
- Our regularity conditions weaker than literature; just require well-defined β_h and integral.
 - Allow non-smooth structural fct ψ_h , general X distr'n (potentially unbounded support).

Estimating the weight function

$$\beta_h = \int \omega_X(x) g'_h(x) dx, \quad \omega_X(x) \equiv \operatorname{Cov}(\mathbb{1}\{X_t \ge x\}, X_t) / \operatorname{Var}(X_t)$$

regression coefficient

- $\hat{\omega}_X(x)$: slope in regression of $\mathbb{1}(X_t \ge x)$ on X_t .
- Weights transform empirical CDF of shocks into interpretable units.
 - Visualize asymmetry, outliers, etc.
- Special case: if X_t is Gaussian, then $\omega_X(x) = \text{density of } X_t$. Yitzhaki (1996)

Estimating the weight function

$$\beta_h = \int \omega_X(x) g'_h(x) dx, \quad \omega_X(x) \equiv \underbrace{\operatorname{Cov}(\mathbbm{1}\{X_t \ge x\}, X_t) / \operatorname{Var}(X_t)}_{\operatorname{Cov}(\mathbbm{1}\{X_t \ge x\}, X_t) / \operatorname{Var}(X_t)}$$

regression coefficient

Government spending shocks from Ramey (2016) handbook chapter:

10

Sensitivity of nonlinear parametric regression

- If we care about characterizing nonlinearities, we should model them.
- But if we only care about average marginal effects, nonlinear modeling can be counterproductive. Even if variables have limited support, e.g., ZLB! Angrist (2001)
- Illustrative example: (population) LP with quadratic term

$$Y_{t+h} = \beta_{0,h} + \beta_{1,h}X_t + \beta_{2,h}X_t^2 + \text{residual}_{h,t+h},$$

with estimated first derivative $\bar{\beta}_h(x) \equiv \beta_{1,h} + 2\beta_{2,h}x$.

• Proposition: If $X_t \sim N(0,1)$,

$$\bar{\beta}_h(x) = E[(1 + X_t x)g'_h(X_t)] = E[g'_h(X_t)] + xE[g''_h(X_t)].$$

• Can easily get sign reversals due to negative weights!

Covariates

• Suppose we relax shock independence to "selection on observables":

 $X_t \perp\!\!\!\perp \mathbf{U}_{h,t+h} \mid \mathbf{W}_t.$

- Nonparametric version of recursive/Cholesky identification. Angrist & Kuersteiner (2011)
- Then conditional ASF is identified:

$$g_h(x, \mathbf{w}) \equiv E[Y_{t+h} \mid X_t = x, \mathbf{W}_t = \mathbf{w}] = E[\varphi_h(x, \mathbf{U}_{h,t}) \mid \mathbf{W}_t = \mathbf{w}] \equiv \Psi_h(x, \mathbf{w}).$$

• LP with controls

$$Y_{t+h} = \hat{\beta}_h X_t + \hat{\gamma}'_h \mathbf{W}_t + \text{residual}_{h,t+h}$$

estimates weighted avg of marginal effects $\partial \Psi_h(x, \mathbf{w}) / \partial x$.

 But weights need not be positive if "propensity score" π^{*}(w) ≡ E[X_t | W_t = w] is nonlinear (more in paper). Lesson: check sensitivity wrt. functional form of controls.

Outline

1 Nonparametric framework for dynamic causality

- ② The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects
- 6 Conclusion

Robustness of linear proxy procedures

• Instead of observing X_t directly, assume we observe a valid **proxy** Z_t satisfying

$$E[Y_{t+h} \mid X_t, Z_t] = E[Y_{t+h} \mid X_t] \equiv g_h(x).$$

• Estimand from "reduced-form" LP/VAR of outcome on proxy:

$$ilde{eta}_h \equiv rac{\mathsf{Cov}(\zeta(X_t), g_h(X_t))}{\mathsf{Var}(Z_t)}, \quad ext{where} \quad \zeta(x) \equiv E[Z_t \mid X_t = x].$$

• Proposition: Proxy identifies weighted sum of marginal effects.

$$ilde{eta}_h = \int ilde{\omega}_Z(x) g'_h(x) \, dx, \quad ext{where} \quad ilde{\omega}_Z(x) \equiv rac{\mathsf{Cov}(\mathbbm{1}\{X_t \geq x\}, \zeta(X_t))}{\mathsf{Var}(Z_t)}$$

• Weights depend only on distr'n of (X_t, Z_t) , not $(Y_{t+h} | X_t)$.

Monotonicity

$$ilde{eta}_h = \int ilde{\omega}_Z(x) g_h'(x) \, dx, \quad ilde{\omega}_Z(x) \equiv \operatorname{Cov}(\mathbbm{1}\{X_t \ge x\}, \zeta(X_t)) / \operatorname{Var}(Z_t)$$

• $\tilde{\omega}_Z(\cdot) \ge 0$ iff. "monotonicity on average":

$$E[Z_t \mid X_t \ge x] \ge E[Z_t \mid X_t < x]$$
 for all x .

- Implied by monotonicity of $\zeta(x) \equiv E[Z_t \mid X_t = x]$. Also implies $\tilde{\omega}_Z(\cdot)$ is hump-shaped.
- Lesson: proxies should be approximately monotonically related to shock of interest, but relationship need not be close to linear.
 - E.g., "narrative sign restriction": $Z_t = \mathbb{1}\{X_t \ge c_2\} \mathbb{1}\{X_t \le -c_1\}$. Antolín-D & Rubio-R (2018)
- In paper: our monotonicity condition is much weaker than "uniform monotonicity" cond'n required when X_t is endogenous. Imbens & Angrist (1994); Angrist, Graddy & Imbens (2000)

Outline

1 Nonparametric framework for dynamic causality

- 2 The Good: observed shocks and proxies
 - Observed shocks
 - Proxies

3 The Bad: identification via heteroskedasticity

4 The Ugly: identification via non-Gaussianity

5 Identification of average marginal effects

6 Conclusion

Identification via heteroskedasticity

- When shocks/proxies are not available, popular to identify latent shock X via restrictions on shock heterosk'y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)
- We consider nonparametric analogue of this approach to show sensitivity to linearity.
- Observe (**Y**, *D*) from **nonparametric factor model** (drop time subscripts):

 $\mathbf{Y} = \boldsymbol{\psi}(X, \mathbf{U}), \quad (D, X) \perp\!\!\!\perp \mathbf{U}.$

• D: regime. Proxy for X, but does not affect mean, only variance and higher moments:

 $E[X \mid D] = 0, \quad X \not\perp D.$

Identification via heteroskedasticity

- When shocks/proxies are not available, popular to identify latent shock X via restrictions on shock heterosk'y in linear SVAR. Sentana & Fiorentini (2001); Rigobon (2003); Lewis (2024)
- We consider nonparametric analogue of this approach to show sensitivity to linearity.
- Observe (**Y**, *D*) from **nonparametric factor model** (drop time subscripts):

 $\mathbf{Y} = \boldsymbol{\psi}(X, \mathbf{U}), \quad (D, X) \perp\!\!\!\perp \mathbf{U}.$

• D: regime. Proxy for X, but does not affect mean, only variance and higher moments:

$$E[X \mid D] = 0, \quad X \not\perp D.$$

• Linear ID: If $\psi(x, \mathbf{u}) = \boldsymbol{\theta} x + \gamma(\mathbf{u})$ and $\theta_1 \operatorname{Cov}(X^2, D) \neq 0$, then

 $\frac{\text{Cov}(\mathbf{Y}, Z)}{\text{Cov}(Y_1, Z)} = \frac{\theta}{\theta_1}, \text{ where } Z \equiv (D - E[D])Y_1. \text{ Rigobon \& Sack (2004); Lewbel (2012)}$

ID via heteroskedasticity: large nonparametric identified set

• Proposition: Suppose we observe (\mathbf{Y}, D) from the nonparametric model

 $\mathbf{Y} = \psi(X, \mathbf{U}), \quad X = \sigma(D)W, \quad W \perp\!\!\!\perp D \perp\!\!\!\perp \mathbf{U},$

where $\sigma(\cdot) \ge 0$ is known, the distr'n of W is symmetric around 0 and known, and the number $m \ge 2$ of shocks is known.

Then the identified set for $\psi(x, \mathbf{u})$ contains a function that is symmetric around 0 in x.

- Can never rule out zero causal effect, $\int \omega(x) \frac{\partial E[\psi(x,\mathbf{U})]}{\partial x} dx = 0$, for symmetric ω !
- Intuition: D shifts only scale of X, not location \implies can't construct proxy Z that satisfies monotonicity requirement, without imposing fct'l form as'ns on ψ .
 - Known issue in linear ID: shock variance depends on regime, yet require coef's to be constant. In nonparametric context, there's no distinction between "shock variances" and "coefficients".

ID via heteroskedasticity: sensitivity of linear procedures

• Proposition: Assume additively separable model

 $\mathbf{Y} = \boldsymbol{ heta}(X) + \boldsymbol{\gamma}(\mathbf{U}).$

Then Rigobon-Sack-Lewbel instrument $Z \equiv (D - E[D])Y_1$ satisfies

$$\operatorname{Cov}(\mathbf{Y}, Z) = \int \check{\omega}(x) \theta'(x) \, dx$$
, for weights $\check{\omega}(x)$ that...

• ... can integrate to $0 \implies$ estimate 0 causal effect of X on Y_j even if $\theta_j(x)$ is linear!

- ... can be negative even in favorable case $Y_1 = X$, depending on entire distribution $(X \mid D)$.
- In non-separable models, we may not estimate any weighted avg of causal effects: if Y = Xγ(U) with E[γ(U)] = 0, then E[Y | X] = 0 but Cov(Y, Z) ≠ 0.

ID via heteroskedasticity: sensitivity of linear procedures

• Proposition: Assume additively separable model

 $\mathbf{Y} = \boldsymbol{ heta}(X) + \boldsymbol{\gamma}(\mathbf{U}).$

Then Rigobon-Sack-Lewbel instrument $Z \equiv (D - E[D])Y_1$ satisfies

$$\operatorname{Cov}(\mathbf{Y}, Z) = \int \check{\omega}(x) \theta'(x) \, dx$$
, for weights $\check{\omega}(x)$ that...

• ... can integrate to $0 \implies$ estimate 0 causal effect of X on Y_j even if $\theta_j(x)$ is linear!

- ... can be negative even in favorable case $Y_1 = X$, depending on entire distribution $(X \mid D)$.
- In non-separable models, we may not estimate *any* weighted avg of causal effects: if $\mathbf{Y} = X\gamma(\mathbf{U})$ with $E[\gamma(\mathbf{U})] = \mathbf{0}$, then $E[\mathbf{Y} \mid X] = \mathbf{0}$ but $Cov(\mathbf{Y}, Z) \neq 0$.
- Silver lining: at least linearity is testable. Power? Rigobon & Sack (2004); Wright (2012)

Outline

1 Nonparametric framework for dynamic causality

- 2 The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects
- 6 Conclusion

Identification via non-Gaussianity

- Recently popular procedure in linear SVAR literature: identify latent shocks by assuming they are independent and non-Gaussian. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz & Saikkonen (2017); Lewbel, Schennach & Zhang (2024); Lewis (2024)
 - A.k.a. "independent components analysis" (ICA) outside economics. Comon (1994)
- Start from nonparametric factor model, but now we only observe **Y** (no proxy):

 $\mathbf{Y} = \boldsymbol{\psi}(X, \mathbf{U}), \quad X \perp\!\!\!\perp \mathbf{U}.$

Identification via non-Gaussianity

- Recently popular procedure in linear SVAR literature: identify latent shocks by assuming they are independent and non-Gaussian. Gouriéroux, Monfort & Renne (2017); Lanne, Meitz & Saikkonen (2017); Lewbel, Schennach & Zhang (2024); Lewis (2024)
 - A.k.a. "independent components analysis" (ICA) outside economics. Comon (1994)
- Start from nonparametric factor model, but now we only observe **Y** (no proxy):

$$\mathbf{Y} = oldsymbol{\psi}(X, \mathbf{U}), \quad X \perp\!\!\!\perp \mathbf{U}.$$

- <u>Linear ID</u> (Darmois-Skitovich theorem):
 - Assume ψ(x, u) = θx + γu, and the shocks (X, U₁,..., U_{m-1}) are independent and non-Gaussian (except perhaps one).

ID via non-Gaussianity: large nonparametric identified set

 $\mathbf{Y} = \boldsymbol{\psi}(X, \mathbf{U}), \quad X \perp\!\!\!\perp \mathbf{U}$

- Unfortunately, there is no general nonlinear Darmois-Skitovich theorem: the nonparametric identified set for the above model is huge. Jutten & Karhunen (2003)
- Problem: independence and non-Gaussianity as'ns are vacuous in nonparametric context.
 - Can always transform a uniform r.v. into any distribution via the quantile function.
 - Can always transform one uniform r.v. into two independent uniforms.
 - In particular, we can represent $\mathbf{Y} = \tilde{\psi}(X)$ where $X \sim unif([0,1]) \Longrightarrow$ can't rule out that X drives all the variation in all observed variables!
 - Formal results in paper.

ID via non-Gaussianity: sensitivity of linear procedures

- Easy to construct cases where any linear ICA procedure is inconsistent *and* the linear model is unfalsifiable.
- Example: Suppose $(X, U) \sim N(\mathbf{0}_{2 \times 1}, \mathbf{I}_2)$ and

$$Y_1 \equiv X + U, \quad Y_2 \equiv \gamma(X - U),$$

where $\gamma(\cdot)$ is an arbitrary nonlinear fct.

- Interpretation: linear ICA model, but we got transformation of Y_2 slightly wrong.
- $Y_1 \perp \downarrow Y_2 \implies$ linear ICA procedure concludes that $Y_1 =$ "shock 1" and $Y_2 =$ "shock 2". Nothing in the data can reject the linear model.
- But X actually only contributes 50% of the variance of Y_1 .
- Discontinuity: same (asymptotic) bias regardless of how close $\gamma(\cdot)$ is to linear.

Outline

1 Nonparametric framework for dynamic causality

- 2 The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **6** Identification of average marginal effects
- 6 Conclusion

General result on ID of average marginal effects

- How can we identify avg marginal effects for pre-specified weight fct ω ?
- Outcome Y, regressor X (arbitrary distribution!), covariates \mathbf{W} . Define

$$g(x, \mathbf{w}) \equiv E[Y \mid X = x, \mathbf{W} = \mathbf{w}].$$

- If X has gaps in support (e.g., discrete/mixed), extend g to an interval via linear interpolation.
- $g'(x, \mathbf{w})$: derivative wrt. $x (= g(1, \mathbf{w}) g(0, \mathbf{w})$ for binary X).
- Proposition: Under weak regularity conditions, for any α s.t. $E[\alpha(X, \mathbf{W}) | \mathbf{W}] = 0$,

$$E[\alpha(X, \mathbf{W})Y] = E[\alpha(X, \mathbf{W})g(X, \mathbf{W})] = E\left[\int \omega(x, \mathbf{W})g'(x, \mathbf{W}) dx\right],$$

where $\omega(x, \mathbf{w}) \equiv E[\mathbbm{1}\{X \ge x\}\alpha(X, \mathbf{W}) \mid \mathbf{W} = \mathbf{w}]$. Newey & Stoker (1993)

Identification of average marginal effects: implications

$$E[\alpha(X, \mathbf{W})Y] = E\left[\int \omega(x, \mathbf{W})g'(x, \mathbf{W})\,dx\right] \tag{\dagger}$$

- Implies most of the preceding propositions.
- With covariates, can derive representation of estimand from partially linear regression as weighted avg of marginal effects. (More in paper.)

 $Y = X\beta + \gamma(\mathbf{W}) + \text{residual}, \text{ where } \gamma \in \Gamma \text{ (potentially nonparametric class).}$

- X can be discrete/cts/mixed. Special cases: Angrist & Krueger (1999); de Chaisemartin & D'Haultfœuille (2020); Goodman-Bacon (2021); Goldsmith-Pinkham, Hull & Kolesár (2024)
- For given ω , estimate average marginal effect on RHS of (†) by reverse-engineering Riesz representer α and reporting the weighted outcome on the LHS of (†).
 - α will generally require nonparametric estimation. Recent double-robust/debiased ML literature suggests combining weighting with outcome modeling. (More in paper.)

Outline

1 Nonparametric framework for dynamic causality

- 2 The Good: observed shocks and proxies
 - Observed shocks
 - Proxies
- 3 The Bad: identification via heteroskedasticity
- **4** The Ugly: identification via non-Gaussianity
- **5** Identification of average marginal effects

6 Conclusion

Conclusion

- Hard work of constructing shock measures/proxies pays off: robustness to nonlinearity.
 - Report implied causal weight function (Stata code in our GitHub repo).
 - Proxies should be approx'ly monotonically related to shocks, but not necessarily linearly.
 - If using covariates for identification, check sensitivity wrt. functional form.
- Identification approaches based on latent shocks sensitive to linearity assumption.
 - This paper: ID via heterosk'y/non-Gauss'y. Future work: ID via long-run/sign restrictions.
- Nonparametric TE literature has useful lessons for macro, despite our smaller data sets. Angrist & Kuersteiner (2011); Angrist, Jordà & Kuersteiner (2018); Rambachan & Shephard (2021)

Appendix

Causal weight functions: tax shocks

Causal weight functions: technology shocks

Causal weight functions: monetary policy shocks

ID via heteroskedasticity: testable restrictions

- While ID via heteroskedasticity is sensitive to linearity, at least linearity is testable.
- If $\mathbf{Y} = \boldsymbol{\theta} X + \boldsymbol{\gamma}(\mathbf{U})$ and $(D, X) \perp\!\!\!\perp \mathbf{U}$, then

$$\mathsf{Var}(\mathbf{Y} \mid D = d_1) - \mathsf{Var}(\mathbf{Y} \mid D = d_0) = [\mathsf{Var}(X \mid D = d_1) - \mathsf{Var}(X \mid D = d_0)] oldsymbol{ heta} heta'$$

should be a rank-1 matrix. Rigobon & Sack (2004); Wright (2012)

• Power against nonlinear alternatives?

ID via non-Gaussianity: second example of sensitivity

• Example: Only nonlinearity is relationship btw Y_2 and U,

$$Y_1 = X + U$$
, $Y_2 = X + \gamma(U)$, $X \perp U$.

- Can choose distr'ns for X and U and a nonlinear fct γ s.t. $Y_1 \perp \perp Y_2$.
- Then any linear ICA procedure erroneously concludes $Y_1 =$ "shock 1", $Y_2 =$ "shock 2".
- Proof: by Box-Muller transform, with $\tilde{\textit{U}}_1$ and $\tilde{\textit{U}}_2$ independent uniforms,

Hence, we can set

$$egin{aligned} Y_1 \equiv \log ilde{Y}_1^2 = X + U, & Y_2 \equiv \log ilde{Y}_2^2 = X + \gamma(U), \ X \equiv \log(-2\log ilde{U}_1), & U \equiv \log\cos^2(2\pi ilde{U}_2), & \gamma(u) \equiv \log\left(1 - \exp(u)\right). \end{aligned}$$