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Abstract: Applied macroeconomists frequently use impulse response estima-
tors motivated by linear models. We study whether the estimands of such proce-
dures have a causal interpretation when the true data generating process is in fact
nonlinear. We show that vector autoregressions and linear local projections onto
observed shocks or proxies identify weighted averages of causal effects regardless
of the extent of nonlinearities. By contrast, identification approaches that exploit
heteroskedasticity or non-Gaussianity of latent shocks are highly sensitive to de-
partures from linearity. Our analysis is based on new results on the identification
of marginal treatment effects through weighted regressions, which may also be of
interest to researchers outside macroeconomics.
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1 Introduction

Impulse response functions are key objects in macroeconomic analysis. Since they measure
dynamic causal effects of surprise changes in policy or fundamentals on subsequent macroe-
conomic outcomes, they provide calibration targets for structural modeling and help validate
model predictions. They also inform optimal economic policy questions, both directly and
indirectly (Christiano, Eichenbaum, and Evans, 1999; McKay and Wolf, 2023).
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Applied researchers typically report impulse response estimators motivated by linear time
series models, such as vector autoregressions (VARs) or local projections. Although there
exists a wealth of nonlinear alternatives (Fan and Yao, 2003; Herbst and Schorfheide, 2016;
Kilian and Lütkepohl, 2017, Chapter 18), linear methods are attractive due to their simplicity
and the difficulty of clearly detecting nonlinear relationships in typical macroeconomic data.
At the same time, both macroeconomic theorists and policymakers think nonlinearities are
important: structural models with essential nonlinearities have become dominant in recent
decades, and many economic policy debates concern state-dependence and asymmetries.
How can we justify using linear methods if we think the world is a nonlinear place?

This paper studies the causal interpretation of impulse response estimators based on
linear models when the data is generated by an essentially unrestricted nonparametric struc-
tural model. We first deliver good news for linear local projection or VAR estimators that
project directly on an observed shock or proxy: their estimand (i.e., probability limit) equals
a weighted average of the true nonlinear causal effects, regardless of the extent of nonlinear-
ities in the data generating process (DGP). By contrast, the news is bad or even ugly for
estimators that identify latent shocks via heteroskedasticity or non-Gaussianity: they gen-
erally do not estimate a meaningful causal summary under departures from linearity. Thus,
the hard work needed to directly measure shocks (or proxies) using historical or institutional
data buys insurance against nonlinearities that other identification approaches lack.

Our good news are based on an extension of the results in Yitzhaki (1996) and Ram-
bachan and Shephard (2021): impulse response estimands from linear local projections and
VARs that project on observed shocks or proxies correspond to positively-weighted averages
of marginal effects—effects of infinitesimally small shocks that average out over all (past,
present, and future) shocks other than the contemporaneous shock of interest, weighted over
different baseline shock values. Thus, these estimands provide a scalar causal summary of
the full richness of the nonlinear causal effects; the positive weights ensure that the researcher
gets the sign right if the true marginal effects are uniformly positive or negative. Our as-
sumptions drop restrictions imposed in the existing literature that ruled out models with
kinks or discontinuous regime-switches or shocks with unbounded support.

In a nonlinear DGP, both the sign and the magnitude of the causal effects can depend
on the baseline shock value (e.g., whether it is positive or negative), so how these values are
weighted can matter a lot. Fortunately, as we illustrate using several empirical examples,
the weight function used by local projections and VARs is straightforward to estimate and
report. In many applications, the researcher does not directly observe the shock of interest

2



but only a proxy, also known as an external instrument (Stock and Watson, 2018). In this
case, we show that an easily-interpretable monotonicity condition is required to guarantee a
positive weight function. We also discuss how the results change when control variables are
needed to isolate a true shock (i.e., recursive or Cholesky identification).

One implication of these results is that linearity-based estimators are useful even when
economic theory predicts a non-linear relationship between the shock and the outcome of
interest. For example, if the outcome variable has limited support, such as when it is
binary or censored (say, due to a zero lower bound), non-linearities are inherently present.
If one is interested in characterizing the nonlinearities, then it makes sense to model them,
and it is of course always a good idea to plot the raw data regardless. However, if one is
interested in an overall summary of marginal effects, then linear local projections and VARs
are theoretically coherent estimators, as discussed earlier. In fact, we show that directly
modeling nonlinearities can be counterproductive unless the researcher is confident in their
modeling: under functional form misspecification, local projections with higher-order terms
still estimate a weighted average of marginal effects, but some of the weights may be negative,
which risks getting the sign of the causal effects wrong. This echoes the message from an
earlier JBES lecture by Angrist (2001) that linear methods provide more robust estimates
of treatment effects than non-linear ones in a cross-section context with limited dependent
variables.

When there is a dearth of direct shock measures or proxies, applied researchers frequently
resort to identification via heteroskedasticity (Sentana and Fiorentini, 2001; Rigobon, 2003;
Lewbel, 2012). Unfortunately, we show that these estimation approaches are sensitive to the
assumption that the structural model is linear: the estimand can easily be nonzero when
there is no causal effect, or negative when the true shock has a uniformly positive effect on the
outcome of interest. Fixing these issues while still delivering informative inference appears
difficult, since a natural nonparametric generalization of the identification strategy yields
very wide identified sets. The intuition for these negative results is that the identification
exploits a source of exogenous variation that shifts the scale of the latent shock of interest but
not its mean. Without strong functional form assumptions, this type of exogenous variation
is uninformative about the effect of a location shift in the shock on the conditional mean
of the outcome, i.e., the impulse response. However, a silver lining is that the linear model
delivers testable restrictions.

The sensitivity to nonlinearity is even greater for identification via non-Gaussianity
(Comon, 1994; Gouriéroux, Monfort, and Renne, 2017; Lanne, Meitz, and Saikkonen, 2017).
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Also known as independent components analysis (ICA), this identification approach has
recently increased significantly in popularity in the VAR literature. We show that the non-
parametric analogue of the identification assumptions yields an identified set so large that
effectively any function of the data can be construed as a “shock”. Intuitively, the mere
assumptions that the latent shocks are independent and non-Gaussian are vacuous in a non-
parametric context: any collection of random variables can always be represented as some
nonlinear function of independent uniformly distributed random variables. Moreover, we
give examples of simple DGPs featuring slight nonlinearity for which any linearity-based
ICA procedure is highly biased asymptotically, yet in these DGPs one cannot reject the
validity of the linear model.

The building block underlying most of the above findings is a set of results on the identi-
fication of weighted averages of marginal treatment effects using weighted regressions, which
connects our analysis to a large literature in microeconometrics (e.g., Yitzhaki, 1996; Newey
and Stoker, 1993; Angrist and Krueger, 1999; Goldsmith-Pinkham, Hull, and Kolesár, 2024).
We extend existing results in this literature by unifying the treatment of continuous, discrete,
and mixed regressors, and by substantially weakening the regularity conditions: we allow for
regressors with unbounded support, impose minimal regularity on the regression function,
and our moment conditions essentially only require the existence of the probability limit of
the regression estimator.

An important limitation of our results is that they only concern identification. While we
are motivated by the observation that full-fledged nonparametric estimation is challenging in
realistic macroeconomic data sets, we do not explicitly analyze the precision or small-sample
bias of the estimators we study. We refer to Herbst and Johannsen (2024) for a discussion
of finite-sample biases of local projections and VARs in linear models.

Literature. Pioneering work on semiparametric causal time series analysis includes
Gallant, Rossi, and Tauchen (1993), White (2006), White and Kennedy (2009), Angrist
and Kuersteiner (2011), and Angrist, Jordà, and Kuersteiner (2018), see also Gonçalves,
Herrera, Kilian, and Pesavento (2021, 2024), Gouriéroux and Lee (2023), and Kitagawa,
Wang, and Xu (2023) for recent contributions. Our result on the causal interpretation of local
projections with observed shocks is very closely related to Rambachan and Shephard (2021)
and subsequent work by Caravello and Martínez Bruera (2024) and Casini and McCloskey
(2024), but we impose substantively weaker assumptions, and also study the properties of
the weight function.
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As for identification via heteroskedasticity or non-Gaussianity, we are not aware of other
work in a nonparametric vein. Montiel Olea, Plagborg-Møller, and Qian (2022) criticize
linearity-based versions of these identification strategies for being seemingly sensitive to
functional form assumptions, and potentially being subject to weak identification. The
present analysis quantifies this sensitivity more precisely by deriving both the identified sets
for the nonparametric analogues of these identification assumptions, and the estimands of
linearity-based procedures.

Outline. Section 2 defines a nonparametric framework for identification of dynamic
causal effects. Section 3 argues that local projection and VAR estimands based on observed
shocks or proxies have a robust causal interpretation regardless of the extent of nonlinearities.
Sections 4 and 5 show, on the other hand, that estimands based on identification through
heteroskedasticity or non-Gaussianity are sensitive to the assumption that the structural
function is linear. Section 6 provides the theoretical basis for the results in the earlier parts
of the paper by extending results from the microeconometric literature on the interpretation
of regression estimators as weighted marginal treatment effects; this section may be of inde-
pendent interest for readers outside macroeconomics. Section 7 concludes. Technical details
and proofs are relegated to the appendix.

2 Nonparametric framework for dynamic causality

In this section we set up a nonparametric framework for dynamic causal identification.

2.1 Model

We are interested in the dynamic response of a scalar outcome variable Yt to an impulse
in the scalar shock variable Xt. As a leading example, one may think of Xt as a variable
controlled by a policy-maker, such as a surprise change in the policy interest rate set by the
central bank. For ease of exposition, we restrict attention to continuously distributed shocks
Xt for now, but Section 6 shows that our results generalize to handle continuous, discrete,
or mixed distributions in a unified manner.

The outcome variable is determined by an underlying dynamic structural model. Our
causal framework doesn’t restrict this model; we only assume that when evaluated h periods
after the realization of the shock Xt, the outcome admits the nonparametric structural
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representation
Yt+h = ψh(Xt,Uh,t+h) for all t, h ≥ 0. (1)

For each horizon h, ψh(·, ·) is an unknown measurable function that we call the structural
function, while Uh,t+h is a vector of all variables (dated before, on, and after time t) that
causally affect Yt+h, other than Xt. Without restrictions on Uh,t+h or the structural function,
the representation (1) is without loss of generality. In typical recursive time-series models,
however, Uh,t+h will contain the vector Yt−1 of observed data at time t − 1 as well as
shocks dated t, t + 1, . . . , t + h, but exclude Xt or shocks dated after t + h (White, 2006;
White and Kennedy, 2009; Caravello and Martínez Bruera, 2024; Gonçalves, Herrera, Kilian,
and Pesavento, 2024). A leading special case is the linear structural VAR model, which
additionally implies that ψh is linear in both Xt and Uh,t+h (e.g., Kilian and Lütkepohl,
2017, Chapter 4.1).

As is conventional in the literature, we assume that the shock of interest is independent
of the nuisance shocks:

Xt ⊥⊥ Uh,t+h. (2)

Given the interpretation of Xt as a “shock”, this independence assumption essentially just
normalizes the structural function ψh, so that its first argument captures the total causal
effect of the shock Xt on Yt+h, including its direct effect and any indirect effects, both
contemporaneous and dynamic. This is illustrated in the following simple example.

Example 1. Consider a univariate AR(1) model with endogenous regime switching:

Yt = ρtYt−1 + τεt + νt,

with regime-dependent parameter ρt = ρ1St + ρ0(1 − St) and binary regime St = 1{εt−1 +
ξt−1 ≤ 0}, and where ρ0, ρ1, τ are constants. Assume that εt, νt, and ξt are i.i.d. and mutually
independent, and that we observe the shock Xt = εt. We can cast this model into the form
required by equations (1) and (2) as follows. Define Uh,t+h ≡ (Yt−1, St, νt, . . . , νt+h, ξt, . . . ,

ξt+h−1, εt+1, . . . , εt+h)′ and ρ(ϑ) ≡ ρ1 1{ϑ ≤ 0} + ρ0 1{ϑ > 0} for ϑ ∈ R. Then, for all h ≥ 1,

ψh(x,u) =
{
y−1(ρ1s+ ρ0(1 − s)) + (τx+ ν)

}
ρ(x+ ξ)

h−1∏
ℓ=1

ρ(ε+ℓ + ξ+ℓ)

+
h∑

ℓ=1
(τε+ℓ + ν+ℓ)

h−1∏
b=ℓ

ρ(ε+b + ξ+b),
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where we have partitioned u = (y−1, s, ν, ν+1, . . . , ν+h, ξ, ξ+1, . . . , ξ+(h−1), ε+1, . . . , ε+h)′. No-
tice that the function ψh captures the full dynamic effect of the shock variable Xt = εt: both
the direct impact effect of εt on Yt (which feeds forward to future periods), and the indirect,
nonlinear effect of εt on the next-period regime St+1 (which also feeds forward). ■

In some applications, such as when Xt corresponds to a policy instrument rather than a
surprise change in the instrument, one may wish to weaken the full independence assump-
tion (2) to a conditional independence assumption—we discuss this extension in Section 3.3.
Either way, it is meaningful to think of varying Xt while keeping Uh,t+h constant, so that
the random function x 7→ ψh(x,Uh,t+h) defines a potential outcome function at horizon h.
One could work directly with these potential outcomes as in Angrist and Kuersteiner (2011),
Angrist, Jordà, and Kuersteiner (2018), and Rambachan and Shephard (2021), and keep
all other past, present, and future shocks (captured by Uh,t+h in our model) implicit. Our
structural function framework is mathematically equivalent, but facilitates comparisons with
the linear structural VAR literature.

2.2 Causal effects

A familiar issue in nonlinear models is that there are multiple possible definitions of an
impulse response, i.e., a dynamic causal effect. In a linear model, the effect of exoge-
nously changing Xt from x0 to x1 is a linear function of the difference x1 − x0: it equals
ψh(x1,Uh,t+h) − ψh(x0,Uh,t+h) = βh(x1 − x0) for some constant scalar βh. By contrast, in
a nonlinear model, the effect is a nonlinear function of the difference x1 − x0, and it also
generally depends on (i) the past history and the current and future nuisance shocks via
Uh,t+h, as well as (ii) the sign and magnitude of x0.

In theoretical macroeconomic modeling, researchers often report the impulse responses
with respect to a so-called “MIT shock”, which starts the economy at steady state, then
hits the economy with a one-off impulse to Xt, and subsequently sets all other current and
future shocks to zero: ψh(Xt,0)−ψh(0,0), where we normalize the steady-state values of Xt

and Uh,t+h to zero. While computationally convenient, this impulse response concept has
no empirical counterpart and is not directly policy relevant in models that do not satisfy
certainty equivalence.

We shall instead focus on impulse responses (causal effects) defined as expected counter-
factual changes in the outcome of interest, averaging out over all other shocks. Specifically,
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define the average structural function

Ψh(x) ≡ E[ψh(x,Uh,t+h)], x ∈ R,

which corresponds to the expected potential outcome function. Here the expectation is taken
over the marginal distribution of Uh,t+h. The expectation is implicitly assumed to exist for
all x. The average structural function measures the counterfactual average value of the
future outcome Yt+h that we would observe if the policy-maker engineered a particular fixed
value x for the policy variable at time t, averaging out over the randomness caused by all
other factors that influence the outcome independently of the policy decision at time t. Even
though in some nonlinear models the structural function ψh is discontinuous in the policy
variable x, the average structural function Ψh will typically be a smoother function of x, as
it averages out over the realizations of other shocks. For example, this is the case in the
regime-switching model in Example 1 if ξt is continuously distributed. A certain amount
of smoothness in Ψh will be important for the identification of causal effects, as we discuss
below.

Typical data samples in macroeconomics are too small to permit accurate nonparamet-
ric estimation of the entire average structural function x 7→ Ψh(x). A pragmatic alterna-
tive is to target weighted averages of the structural function—average causal effects—or its
derivatives—average marginal effects (Rambachan and Shephard, 2021; Gonçalves, Herrera,
Kilian, and Pesavento, 2021, 2024). This paper focuses on estimation of average marginal
effects

θh(ω) ≡
∫
ω(x)Ψ′

h(x) dx, (3)

where ω(·) is a weight function averaging across the baseline values of the shock variable
Xt. We reserve the term average marginal effect to weight functions that are convex, i.e.,
ω(x) is nonnegative for all x and integrates to one,

∫
ω(x) dx = 1. This ensures that θh(ω)

is a meaningful causal summary of the average structural function Ψh(x) in that it prevents
what Small, Tan, Ramsahai, Lorch, and Brookhart (2017) call a sign-reversal: if Ψ′

h(x) has
the same sign for all x (+, 0 or −), then θh(x) will also have this sign.1 This property
is particularly useful when qualitatively validating predictions of structural macroeconomic
models.

1Blandhol, Bonney, Mogstad, and Torgovitsky (2022) call estimands with convex ω “weakly causal”. Con-
vex weighting schemes also satisfy what Robins, Sued, Lei-Gomez, and Rotnitzky (2007) call “boundedness”:
θh(ω) lies in the support of Ψ′

h(x).
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Depending on the form of the weight function, θh(ω) has two interpretations in terms of
an average causal effect of a shock with magnitude δ > 0,

θh(δ, ω0) ≡ 1
δ

∫
ω0(x){Ψh(x+ δ) − Ψh(x)} dx. (4)

First, the average marginal effect corresponds to the average causal effect for infinitesimally
small shocks: θh(ω) = limδ→0 θh(δ, ω), provided we can pass the limit as δ → 0 under the
integral sign in (4). Second, if the weighting in (3) admits the integral representation ω(x) =
1
δ

∫ x
x−δ ω0(x) dx, substituting Ψh(x + δ) − Ψh(x) =

∫ x+δ
x Ψ′(χ) dχ into (4) and changing the

order of integration yields θh(ω) = θh(δ, ω0). For this reason, focusing on average marginal
effects is without loss of generality.

In a linear model, the weighting does not matter, since Ψ′
h(x) does not depend on x. But

in nonlinear models, it could matter greatly whether we attach most weight to positive or
negative shocks, or to shocks with small or large magnitude. Therefore, accounting for the
form of the weighting ω is important when using estimates of θh(ω) to calibrate or validate
structural macroeconomic models. In the next section, we discuss identification approaches
that deliver weighted averages of marginal effects under a particular weighting scheme that
depends on the shock distribution. In Section 6, we discuss estimation approaches that target
any pre-specified weighting scheme.

3 The good: observed shocks and proxies

If the researcher directly observes the shock of interest, or at least a valid proxy for it,
then there is good news: conventional local projections or structural VAR impulse responses
estimate average marginal effects with an interpretable weighting scheme, regardless of how
nonlinear the underlying DGP is. Moreover, the weights can be estimated from the data, and
we give several empirical examples of how to interpret them. In contrast to linear estimators,
we demonstrate using a simple example that nonlinear extensions of local projections or VARs
do not generally provide meaningful causal summaries under misspecification. Finally, we
extend the analysis to shocks that are recursively identified, i.e., by controlling for covariates.

3.1 Identification with observed shocks

We start off by assuming that the researcher directly observes (or consistently estimates) the
shock Xt of interest. This would be the case, for example, if the shock is identified through
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a “narrative approach”. See Ramey (2016) for several empirical examples.
Under the nonlinear structural model (1) and the shock independence assumption (2),

the conditional expectation of the outcome given the shock,

gh(x) ≡ E[Yt+h | Xt = x], (5)

nonparametrically identifies the average structural function:

Ψh(x) = E[ψh(x,Uh,t+h)] = E[ψh(x,Uh,t+h) | Xt = x] = gh(x). (6)

Hence, in principle, we could estimate any weighted causal effect of interest by running a
nonparametric regression of Yt+h on Xt to obtain gh(·) in the first step, and then averaging
this function according to the desired weighting scheme in the second step, as suggested by
Gouriéroux and Lee (2023) and Gonçalves, Herrera, Kilian, and Pesavento (2024, Section
6). In Section 6, we discuss a complementary strategy that identifies the same estimand
via weighted averages of the observed outcomes, and how both strategies can be combined.
However, as discussed in more detail in Section 6, these strategies may yield noisy and
sensitive estimates in the relatively small samples available in macroeconomics.

Interpretation of linear projection estimates. We take a cue from Ram-
bachan and Shephard (2021) and instead aim for a less ambitious goal. Rather than target-
ing a pre-specified weighted average of causal or marginal effects, we focus on simple local
projection and VAR estimators, which are relatively precise even with small sample sizes.
We demonstrate that these simple estimators have an attractive robustness property: even
though they are motivated by a linear model, when the DGP is nonlinear, their estimand
can still be interpreted as an average marginal effect with a particular weight function.

The local projection estimator of Jordà (2005) estimates the impulse response of Yt with
respect to Xt at horizon h as the coefficient β̂h in the ordinary least squares (OLS) regression

Yt+h = β̂hXt + γ̂′
hWt + residualh,t+h, (7)

where Wt is a vector of control variables (typically including a constant and lagged outcomes
and shocks). For now, we will assume that the shock Xt is in fact a “shock”, so that it is
linearly unpredictable using the controls: Cov(Xt,Wt) = 0. Then the set of controls Wt

affects only the precision of β̂h, but not its probability limit. In particular, under standard
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stationarity and ergodicity assumptions, the local projection estimator β̂h will converge in
probability to the population projection coefficient

βh ≡ Cov(gh(Xt), Xt)
Var(Xt)

. (8)

Plagborg-Møller and Wolf (2021, Propositions 1 and 2) show that a VAR which includes
Xt ordered first has the exact same population estimand (8), provided that the number of
lags in the VAR is sufficiently large.2 It is a textbook result that the linear function βhx

provides the best linear approximation to the potentially nonlinear average causal function
gh(x) = Ψh(x) (e.g., Angrist and Pischke, 2009, Theorem 3.1.6), so that it approximates the
average causal function in a prediction sense. However, this result is not directly informative
about whether βh has a causal interpretation—whether it can be interpreted as an average
marginal effect if Ψh(x) is nonlinear.

The following proposition shows that the local projection and VAR estimand (8) achieves
our goal: it has a causal interpretation as an average marginal effect (3). The result is not
new—it appeared previously in Yitzhaki (1996) and Rambachan and Shephard (2021); as
we discuss below, the novelty lies in substantively weakening the regularity conditions.

Proposition 1. Assume that Xt is continuously distributed on an interval I ⊆ R (the
interval may be unbounded, and could equal R), with positive and finite variance. Assume
that the conditional mean gh defined in (5) is locally absolutely continuous on I.3 Suppose
finally that E[|gh(Xt)|(1 + |Xt|)] < ∞ and

∫
I ωX(x)|g′

h(x)| dx < ∞, where

ωX(x) ≡ Cov(1{Xt ≥ x}, Xt)
Var(Xt)

. (9)

Then the estimand (8) satisfies

βh =
∫

I
ωX(x)g′

h(x) dx,

and the weight function ωX has the following properties:

(i) It is convex: ωX(x) is non-negative for all x, and integrates to one,
∫

I ωX(x) dx = 1.

(ii) It is hump-shaped: monotonically increasing from 0 to its maximum for x ≤ E[Xt],

2If Xt is linearly unpredictable from lagged data, it is sufficient that the lag length weakly exceed h.
3That is, absolutely continuous on any compact interval contained in I.
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and then monotonically decreasing back to 0 for x ≥ E[Xt].

(iii) It depends only on the marginal distribution of Xt, and not on the conditional distribu-
tion of Yt+h given Xt.

Combined with the identification result (6) for the average marginal effect, Proposition 1
shows that linear local projections and VARs remain useful in a nonlinear world: they
estimate an average causal effect θh(ωX) =

∫
ωX(x)Ψ′

h(x) dx for infinitesimal shocks, with a
convex weighting scheme ωX . Furthermore, the scheme gives most weight to shocks close to
the mean E[Xt], with little weight given to extreme values. In the special case where Xt is
normally distributed, Proposition 1 reduces to Stein’s lemma (Lemma 1 in Stein, 1981): the
weight function ωX reduces to the normal density function, so that βh equals the expected
marginal effect, E[Ψ′

h(Xt)], as noted by Yitzhaki (1996). The fact that the weighting scheme
depends only on the marginal distribution of Xt and not the particular outcome variable
Yt+h or horizon h allows for comparisons of average marginal effects for different outcomes
or across different horizons h. If the true DGP is in fact linear, then the weighting of course
does not matter, and we recover the conventional linear impulse response.

While we focus here on interpreting the proposition in the context of the causal model
in Section 2, the result does not require the structural assumptions (1)–(2). This is relevant
in settings in which the conditional mean gh(x) = E[Yt+h | Xt = x] is a useful descriptive
object even if it does not have a direct causal interpretation.

The assumption that Xt is continuously distributed can be dropped without changing
the result, as we show in Section 6. In cases where there are gaps in the support of Xt,
such as when the shock is discrete or mixed, one just needs to extend the definition of
the conditional mean function gh to the whole interval I by linear interpolation. To our
knowledge, this unification of the treatment of continuous, discrete, and mixed distributions
is novel.

Even in the case of a continuously distributed shock, the assumptions in Proposition 1
are substantively weaker than those in the literature, and accommodate all textbook linear
models as well as a wide range of nonlinear models. The assumption that gh is locally abso-
lutely continuous is necessary to ensure that weighted marginal effects are well-defined. As
discussed earlier, this assumption will typically hold even in models with discrete regimes
or kinks, since the conditional expectation (6) averages out the effect of nuisance shocks.
The moment conditions and integrability condition

∫
I ωX(x)|g′

h(x)| dx < ∞ just ensure that
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the estimand βh and the weighted marginal effect exist.4 In contrast, the original work by
Yitzhaki (1996) does not provide a formal proof or regularity conditions on gh (neither does
the discussion by Angrist and Pischke, 2009, pp. 78 and 110). Analogous results in Ram-
bachan and Shephard (2021), Graham and de Xavier Pinto (2022), Caravello and Martínez
Bruera (2024), and Casini and McCloskey (2024) require the potential outcome function
(not its expectation) to be smooth, which rules out models with kinks or discrete regimes,
and require the interval I to be bounded, which rules out the textbook case of normally dis-
tributed shocks. The restrictiveness of these conditions led Gonçalves, Herrera, Kilian, and
Pesavento (2024, Appendix C) to question the applied relevance of the causal interpretation
of the estimand (8), but our weaker conditions demonstrate that this concern is unfounded.

Estimating the weight function. As argued by Angrist and Krueger (1999) for
the case of discrete Xt, the weight function ωX defined in (9) can be estimated in the data.
This allows the researcher to gauge which weighted causal effect is being estimated: does it
attach most weight to negative or positive shocks, small or large shocks? Since the weight
function depends only on the shock variable itself and not the outcome variable or the impulse
response horizon, it is only necessary to estimate a single function. We therefore recommend
that researchers always estimate and plot this function.

Estimation is simple: ωX(x) equals the slope coefficient in a (population) regression of
the indicator 1{Xt ≥ x} on Xt. This regression can be implemented in the data via OLS,
separately for each value x of Xt observed in the data.5 In applications, it may also be of
interest to report an integral

∫ x
x ωX(x) dx of the weight function over an interval x ∈ [x, x].

Appendix A.1 shows that we can estimate this integral by the slope coefficient in an OLS
regression of Mt ≡ max{min{Xt, x}, x} on Xt. In particular, to estimate the total weight∫∞

0 ωX(x) dx given to positive shocks, we simply regress Mt ≡ max{Xt, 0} on Xt.
To illustrate, we now empirically estimate the weight function ωX for various macroe-

conomic shocks considered in the handbook chapter by Ramey (2016). We use Ramey’s
replication code and data off the shelf. In particular, prior to computing weights, all shocks
are residualized on the same control variables that she uses in her VARs and local projections.
The estimates of the weight functions are obtained from OLS regression output, as described

4Lemma 4 in Appendix B shows that for the integrability condition to hold, it is sufficient to assume the
tails of gh(x) are monotone.

5Pointwise confidence intervals can be obtained with conventional heteroskedasticity-robust standard
errors. One could also use autocorrelation robust standard errors to allow for time series dependence of Xt,
but causal interpretation is more challenging if the shocks are not independent.
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above. To demonstrate the ease of implementation, all steps of the computations are carried
out in Stata, like Ramey’s replication code.6

Figure 1 shows the estimated weight functions for four identified government spending
shocks from the applied literature. Note that the shocks are not entirely comparable due
to differences in their precise definitions and sample periods. The Blanchard and Perotti
(2002) and Fisher and Peters (2010) shocks, which are intended to capture general govern-
ment spending shocks, yield approximately symmetric weight functions. By contrast, the
Ben Zeev and Pappa (2017) and Ramey (2011) shocks, which capture news about future de-
fense spending, generate weight functions that are skewed towards positive shocks. In fact,
both these shocks exhibit a large positive outlier in 3rd quarter of 1950 (the onset of the
Korean War), reflected in the fat right tail of the estimated weight functions. In other words,
impulse responses from local projections or VARs estimated off the latter two shocks will
largely reflect the causal effects of sharp military buildups, rather than retrenchments. This
is important to remember when using empirical impulse responses to discipline structural
models that feature asymmetries (such as downward nominal wage rigidity or borrowing con-
straints), since then model-implied impulse responses with respect to positive government
spending shocks will differ from those for negative shocks. Appendix A.5 gives further exam-
ples of weight functions for several identified tax, technology, and monetary policy shocks.
As these examples illustrate, plotting estimates of the weights ωX is useful in interpreting the
results of any subsequent impulse response analysis and for comparing with prior studies.

Parametric nonlinear specifications. In many cases, economic theory predicts
that the average structural function Ψh is likely nonlinear. For example, if the outcome
variable has limited support, such as due to censoring or when it is discrete, the structural
function must necessarily be non-linear. In such cases, it seems natural to model the non-
linearity directly, rather than to stick to a linear specification as in (7). For example, Jordà
(2005) and Jordà and Taylor (2024) suggest including powers of the shock in local projec-
tions. Similarly, there is a rich literature on nonlinear extensions of VAR models, see for
example Kilian and Lütkepohl (2017, Chapter 18). Such direct modeling of the nonlineari-
ties is sensible if the goal of the analysis is to directly characterize the extent and types of
nonlinearity present in the data, e.g., threshold effects or sign and size dependence (Caravello
and Martínez Bruera, 2024).

However, for estimating average causal effects, simple linear local projections or VARs

6Our code and data are available at https://github.com/mikkelpm/nonlinear_dynamic_causal
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Figure 1: Estimated causal weight functions ωX for government spending shocks obtained from the
replication files for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations.
“ω > 0”: total weight

∫∞
0 ωX(x) dx on positive shocks. Papers referenced: Blanchard and Perotti

(2002), Fisher and Peters (2010), Ben Zeev and Pappa (2017), Ramey (2011).

appear more robust than nonlinear parametric specifications. As shown in Proposition 1,
the linear specification in (7) is robust to misspecification in that it estimates a well-defined
average marginal effect regardless of the form of nonlinearity in the structural function Ψh.
By contrast, we now show that this is not the case for a local projection specification that
includes a quadratic term, echoing similar results in Angrist (2001) regarding robustness
of parametric non-linear limited dependent variable models. These results suggest that
nonlinear specifications do not generally have such a robustness property.

Consider a quadratic local projection of Yt+h on Xt, X2
t , and an intercept.7 Assume for

analytical simplicity that Xt has a standard normal distribution, so in particular Xt and
X2

t are uncorrelated (our qualitative conclusions can be shown to go through without the

7While we focus on the quadratic case for simplicity, Proposition 2 below can be shown to generalize to
a polynomial specification of any fixed order.
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normality assumption). Then the population version of the projection is

Yt+h = β0,h + β1,hXt + β2,hX
2
t + residualh,t+h,

with implied derivative of the regression function at Xt = x given by

β̄h(x) ≡ β1,h + 2β2,hx, (10)

and population regression coefficients

β1,h ≡ Cov(gh(Xt), Xt)
Var(Xt)

, β2,h ≡ Cov(gh(Xt), X2
t )

Var(X2
t ) . (11)

Proposition 2. Assume that Xt ∼ N(0, 1), and that gh defined in (5) is differentiable with a
derivative that is locally absolutely continuous on R. Finally, assume E[|gh(Xt)| + |g′

h(Xt)| +
|g′′

h(Xt)|] < ∞. Then, using the definitions (10)–(11),

β̄h(x) = E[(1 +Xtx)g′
h(Xt)] = E[g′

h(Xt)] + xE[g′′
h(Xt)]. (12)

The first expression in (12) shows that the estimated derivative β̄h(x) equals a weighted
average of the true derivative function g′

h(·), but with weights that are negative whenever
1 + Xtx < 0.8 If the true regression function gh is in fact quadratic, then βh(x) is consis-
tent for the marginal effect function Ψ′

h(x). But if the regression function is misspecified,
the negative weighting leads to a sign reversal: the second expression in (12) implies that
even if gh is monotonically increasing, the estimated derivative β̄h(x) will be negative for
sufficiently large x whenever E[g′′

h(X)] < 0. Such sign reversal is not shared by the linear
estimator (7), for which the weighting scheme ωX is convex. This lack of robustness of a
quadratic (or more generally polynomial) specification of the regression function to func-
tional form misspecification is related to the observation in White (1980) that polynomial
approximations to the conditional mean function gh cannot be interpreted as providing a
Taylor series approximation to gh.

8It also follows from the proposition that any estimated weighted average derivative
∫

ω(x)β̄(x) dx that
is a nontrivial function of the coefficient β2,h (i.e., whenever

∫
xω(x) dx ̸= 0) equals a weighted average of

g′
h(·) with weights that are negative for some x.
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State-dependent specifications. A particularly popular nonlinear local projection
specification in applied work is a state-dependent specification that interacts the shock with
a binary regime indicator St ∈ {0, 1} (see Gonçalves, Herrera, Kilian, and Pesavento, 2024,
and references therein):

Yt+h = β̂0,h(1 − St)Xt + β̂1,hStXt + γ̂′
0,h(1 − St)Wt + γ̂′

1,h(StWt) + residualh,t+h.

For example, St may indicate whether the economy is in an NBER recession or not. As-
suming that the local projection is fully interacted as above (i.e., all control variables Wt

are interacted with St), then the procedure is tantamount to running separate regressions
on the subsamples with St = 0 and St = 1, respectively.9 It follows that all the analysis
surrounding Proposition 1 above applies upon conditioning on St = s ∈ {0, 1}. In particular,
the probability limit of the state-dependent impulse response estimate β̂s,h equals a posi-
tively weighted average of conditional marginal effects ∂E[Yt+h | Xt = x, St = s]/∂x, which
have a clear causal interpretation provided the shock independence assumption (2) holds
conditional on St (i.e., within each regime). Thus, despite their apparent linearity condi-
tional on regime, state-dependent local projections identify causal estimands even when the
true DGP has a nonlinear form, such as a model with smooth or discrete regime-switching.
However, consistent with the discussion in Section 2, it is important to interpret the impulse
responses as averaging over all future shocks, including potential future regime switches. In
other words, the local projection estimand does not hold the regime fixed within the impulse
response horizon.

3.2 Identification with proxies

In many applications, observations of the shock are contaminated by measurement error,
such as when accurate measurements are available only in a subset of the time periods.
In such cases, researchers typically treat the measurements Zt as a proxy for the shock of
interest Xt, or, equivalently, an instrument for the shock (see Stock and Watson, 2018, for
a review). We now show that when the structural function is nonlinear, linear VARs and
local projections onto the proxy identify average marginal effects up to scale, provided that
the conditional mean of the proxy given the shock is monotone in the shock.

9If we instead omit the interaction terms from the regression and only control linearly for St, then we are
in the case of Sections 3.3 and 6.2 below.
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We assume that the proxy Zt is valid, in the sense that it satisfies the exclusion restriction

E[Yt+h | Xt, Zt] = E[Yt+h | Xt] = gh(Xt), (13)

which formalizes the notion that if we in fact observed the true shock Xt, the proxy Zt would
not provide any further explanatory power for the outcome. It is implied by the standard
assumption in the measurement error literature that the measurement error in Zt is non-
differential, i.e., that the whole conditional distribution of Yt+h given (Xt, Zt) depends only
on Xt (or equivalently that Zt is independent of Uh,t+h) (e.g., Carroll, Ruppert, Stefanski,
and Crainiceanu, 2006, Chapter 2.6).

We consider the “reduced-form” local projection of the outcome Yt+h on the proxy Zt.
Under (13), the population version of this regression has slope coefficient

β̃h ≡ Cov(ζ(Xt), gh(Xt))
Var(Zt)

, (14)

where
ζ(x) ≡ E[Zt | Xt = x] (15)

denotes the “first-stage” conditional mean function. As shown by Plagborg-Møller and Wolf
(2021), this β̃h also corresponds to the probability limit of an impulse response from a
structural VAR where the proxy is ordered first, and the specification controls for sufficiently
many lags.

Proposition 3. Assume that Xt is continuously distributed on an interval I ⊆ R (the
interval may be unbounded, and could equal R), and that the variance of Zt is positive and
finite. Assume that the conditional mean gh defined in (5) is locally absolutely continuous on
I, and E[|gh(Xt)|(1 + |ζ(Xt)|)] < ∞. Finally, assume that for sufficiently large positive and
negative x, the sign of ζ(x) −E[Zt] does not change, and that

∫
I |ω̃Z(x)g′

h(x)| dx < ∞, where

ω̃Z(x) ≡ Cov(1{Xt ≥ x}, ζ(Xt))
Var(Zt)

. (16)

Then, the proxy estimand (14) satisfies

β̃h =
∫

I
ω̃Z(x)g′

h(x) dx.

The weight function ω̃Z has the following properties:
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(i) It is invariant to additive and multiplicative measurement error, up to scale: If Z̃t =
V1t + V2tZt, where (V1t, V2t) is a bivariate random vector independent of (Xt, Zt), then
ω̃Z̃(x) = E[V2t]ω̃Z(x) for all x.

(ii) It is nonnegative, ω̃Z(x) ≥ 0, provided that E[Zt | Xt ≥ x] ≥ E[Zt | Xt < x].

(iii) It depends only on the joint distribution of (Xt, Zt), but not on the conditional distri-
bution of Yt+h given Xt.

A sufficient condition for property (ii) is that the conditional mean function ζ(x) is monotone
increasing. Under this assumption, ω̃Z is also hump-shaped: monotonically increasing from
0 to its maximum for x ≤ x0, and then monotonically decreasing back to 0 for x ≥ x0, where
x0 ≡ inf{x ∈ I : ζ(x) ≥ E[Zt]}.

Combining Proposition 3 with the identification result (6) implies that linear proxy re-
gressions identify weighted averages of marginal effects, θh(ω̃Z) =

∫
ω̃Z(x)Ψ′

h(x) dx, just as in
the case of directly observed shocks. Unlike in the observed shocks case, the weights ω̃Z will
not be positive unless the proxy satisfies the condition in point (ii) of Proposition 3—this
condition is slightly weaker than monotonicity of ζ(x).10 However, monotonicity of ζ en-
sures not just that the weights are positive, but also that they have an intuitive hump-shape,
giving most weight to shocks in the middle of the distribution.

Monotonicity of ζ is implied by, but much weaker than the continuous-treatment version
of the Imbens and Angrist (1994) monotonicity condition, needed for causal interpretation of
two-stage least squares estimands under endogeneity. We defer the details to Appendix A.2,
where we generalize the identification results in Angrist, Graddy, and Imbens (2000) by
allowing for non-smooth potential outcome functions and non-binary Zt. It follows from
this identification result that monotonicity of ζ holds under much weaker conditions than
those required for causal interpretation of β̃h under endogeneity. Rambachan and Shephard
(2021, Theorem 7) derive an alternative characterization of the proxy estimand (14) involving
derivatives of the reduced-form potential outcome as a function of the proxy Zt (rather than
of the shock Xt), and therefore the monotonicity assumption has no counterpart in their
analysis.

A practical implication of Proposition 3 is that applied researchers should seek to con-
struct proxies that are credibly positively related to the unobserved latent shock of interest.

10For instance, the condition may still hold even if monotonicity is violated over a sufficiently small interval
in the middle of the support of Xt.

19



However, it is not essential that the relationship is linear or indeed of any particular known
functional form.

Example 2. An interesting example of a proxy is one constructed from so-called “narrative
sign restrictions”, where it is assumed that the researcher observes not the shock itself, but
a discrete signal of whether a large shock occurred. While Antolín-Díaz and Rubio-Ramírez
(2018) and Giacomini, Kitagawa, and Read (2023) exploit such restrictions in a likelihood
framework, Plagborg-Møller and Wolf (2021) and Plagborg-Møller (2022) recommend treat-
ing them as a special case of proxy identification.

As a concrete example, assume that for some constants c1, c2 ≥ 0 (which may be unknown
to the econometrician), Zt = 1{Xt ≥ c2} − 1{Xt ≤ −c1}. That is, the proxy equals 1 for
sufficiently large positive shocks, −1 for sufficiently large negative shocks, and is otherwise
uninformative.11 Let FX(x) ≡ P (Xt ≤ x) be the cumulative distribution function (CDF) of
Xt. Then the weight function w̃Z(x) is nonnegative and proportional to

Cov(1{Xt ≥ x}, Zt) =


FX(x)[2 − FX(c2) − FX(−c1)] for x ≤ −c1,

FX(x)[1 − FX(c2) − FX(−c1)] + FX(−c1) for x ∈ (−c1, c2),

[1 − FX(x)][FX(c2) + FX(−c1)] for x ≥ c2,

as can be verified through direct calculation. It is easy to see that the above weight function
is hump-shaped: monotonically increasing until either x = −c1 or x = c2 (depending on
the sign of 1 − FX(c2) − FX(−c1)), and then monotonically decreasing. Arguably, such a
weight function is economically sensible. In fact, if 1 − FX(c2) = FX(−c1) (as would be
the case if c1 = c2 and the distribution of Xt were symmetric around 0), then the weight
function is “nearly” uniform as it is shaped like a plateau: increasing for x < −c1, then flat
for x ∈ [−c1, c2], then decreasing.

This example shows that conventional proxy local projections or VARs can estimate mean-
ingful causal summaries even if the proxy (which here is discrete) is quite nonlinearly related
to the true (continuous) shock, and in ways that are not directly known to the econometri-
cian. This robustness may not be shared by likelihood-based approaches to identification
via narrative restrictions. ■

11This example assumes that we correctly classify all episodes with shocks of sufficiently large magnitude.
However, Proposition 3 shows that the calculations continue to apply (up to scale) even if there is random
misclassification of the form Zt = Vt[1{Xt ≥ c2} − 1{Xt ≤ −c1}], where Vt is a Bernoulli random variable
that is independent of (Xt, Yt+h).
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The weight function (16) does not integrate to 1 due to attenuation bias, so that we only
identify average marginal effects up to scale. However, since the weight function doesn’t
depend on the outcome, this is not an issue in practice: we can scale β̃h by the response
of some normalization variable to the proxy (this is the so-called unit effect normalization)
to identify a relative marginal effect. The local projection instrumental variable estimator
of Stock and Watson (2018), which is a two-stage least squares version of local projection,
automatically performs this normalization.

Since the shock Xt is not directly observed, we cannot generally estimate the weight func-
tion ω̃Z in the data. Instead, it may be useful to plot the observed-shock weight function (9)
pretending that Zt is the actual shock of interest. If it happens that Zt ≈ Xt, then these
weights will be close to the proxy weights ω̃Z , so the plot provides a “best-case” scenario.

3.3 Identification with control variables

In applications where it is challenging to isolate purely exogenous shifts in policy or funda-
mentals, researchers may be willing to assume that the observed variable Xt (which could
be a policy instrument) is exogenous conditional on some control variables Wt (such as
variables that comprise the policy-makers information set):

Xt ⊥⊥ Uh,t+h | Wt. (17)

This is a selection on observables assumption as in Angrist and Kuersteiner (2011) and An-
grist, Jordà, and Kuersteiner (2018). For example, the assumption holds if Xt = Υ(εt,Wt),
where εt is a shock that is independent of (W′

t,U′
h,t+h)′, a nonparametric version of the

recursive (or Cholesky) assumption in linear structural VAR identification (e.g., Christiano,
Eichenbaum, and Evans, 1999). Then the conditional expectation function

gh(x,w) ≡ E[Yt+h | Xt = x,Wt = w]

equals the conditional average structural function in the causal model (1):

gh(x,w) = E[φh(x,Uh,t+h) | Wt = w] ≡ Ψh(x,w),

where the expectation is taken with respect to the conditional distribution of the nuisance
shocks Uh,t+h given Wt.

Even under the selection on observables assumption (17), the local projection with con-
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trols (7) need not estimate an average marginal effect if the relationship between Xt and the
controls is nonlinear. This result extends to recursively identified structural VARs, due to
the nonparametric equivalence between these procedures (Plagborg-Møller and Wolf, 2021).
Proposition 7 below shows that the population local projection coefficient βh can still be
written as a weighted average of the marginal effects ∂g(x,w)/∂x = ∂Ψh(x,w)/∂x, but the
weights can be negative if the true “propensity score” π∗(w) ≡ E[Xt | Wt = w] is nonlinear.
We leave the details, which extend the analysis of Goldsmith-Pinkham, Hull, and Kolesár
(2024) to cases with non-discrete Xt, to Section 6. As usual, negative weights are worrying,
as they may lead to a sign-reversal. Hence, in cases where control variables are used for
identification, we recommend that researchers do careful sensitivity checks with respect to
both the set of controls and the functional form for the controls (e.g., whether they are
included only linearly in the regression or more flexibly by, say, including interactions and
polynomials). If Wt just consists of a set of mutually exclusive dummies, then linearity of
the propensity score comes for free, and the weights are guaranteed to be positive.

4 The bad: identification via heteroskedasticity

Identification via heteroskedasticity has become a popular procedure for causal identification
in applications where direct shock measures are unavailable, following Sentana and Fioren-
tini (2001), Rigobon (2003), and Rigobon and Sack (2004).12 In a pair of highly-cited papers,
Lewbel (2012, 2018) exploits this idea to achieve identification in cross-sectional regressions
with endogenous variables and no external instruments (see also Klein and Vella, 2010, for a
related approach). In stark contrast to Section 3, the results in this section deliver bad news
regarding the sensitivity of identification approaches via heteroskedasticity to the assump-
tion that the underlying structural function is linear: the Rigobon-Sack-Lewbel estimator
does not generally estimate average marginal effects; more generally, we show that the non-
parametric analogue of the identification approach yields very large identified sets for causal
effects. One piece of positive news is that it is possible to test the linearity assumption in
the data.

12Similar identification approaches were developed in the signal-processing literature in the 1990s, see the
review by Hyvärinen, Karhunen, and Oja (2001, Section 18.2).
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4.1 Nonparametric version of the identification approach

To explain the sensitivity of conventional identification via heteroskedasticity to the linearity
assumption on the structural function, it is helpful to first lay out a nonparametric version
of the framework before we review the linear case. Since this section is mainly concerned
with giving examples of how the identification approach can fail, we specialize the dynamic
set-up from Section 2 to a simpler static model.

Nonparametric setup. We observe an n-dimensional vector Y of variables that are
nonlinearly related to a latent, scalar shock of interest X as well as an (m− 1)-dimensional
latent vector U of nuisance shocks:

Y = ψ(X,U), X ⊥⊥ U, (18)

where we suppress time subscripts to ease notation. The above model is a (static) non-
parametric factor model, since we do not impose parametric restrictions on the unknown
structural function ψ : Rm → Rn.

The econometrician observes a scalar D that is informative about the heteroskedasticity
of the shock of interest X but independent of the nuisance shocks U (jointly with X):

(D,X) ⊥⊥ U. (19)

This assumption implies that D is a valid proxy for X, in the sense that Y and D are
independent conditional on X. But because the variable D only influences the variance and
higher moments of X but not its mean,

E[X | D] = 0, (20)

we cannot use the proxy in local projections as in Section 3.2. For concreteness, it may
be useful to think of D as a binary regime indicator, which affects the conditional variance
Var(X | D) but not the conditional mean (20), as in the original work by Rigobon (2003).

If we assume that the structural function ψ is linear, it is possible to achieve identifi-
cation even if D is unobserved, and we relax (19) by allowing D to affect the variances of
nuisance shocks. See Bacchiocchi, Bastianin, Kitagawa, and Mirto (2024) and Lewis (2024,
Section 3) for excellent reviews. However, since we are only interested in showing how the
basic identification approach can fail in a nonparametric context, we maintain the stronger
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assumptions above. It then follows a fortiori that nonparametric identification is even more
challenging under weaker assumptions.

Review of linear identification. If the structural function ψ in (18) is known
to be partially linear, identification of causal effects obtains under an additional relevance
assumption. Thus, we temporarily assume that

ψ(x,u) = θx+ γ(u), (21)

where θ is the unknown vector of causal effects of X, while γ : Rm−1 → Rn is an unknown
function. Following Rigobon and Sack (2004) and Lewbel (2012), construct the scalar in-
strumental variable

Z ≡ (D − E[D])Y1, (22)

where Y1 is the first element of Y. In applications, Y1 may be a policy instrument that
is known to be strongly related to X, though it is also allowed to be correlated with the
nuisance shocks. Under the linear model (21) and the identification assumptions (19)–(20),
Z satisfies the exogeneity restriction for linear identification in Stock and Watson (2018)
since E[Z | U] = 0. In particular, under these assumptions, a regression of Y on Y1 using Z
as instrument identifies the (relative) causal effects of X:

1
Cov(Y1, Z) Cov(Y, Z) = 1

θ1
θ. (23)

To ensure we are not dividing by zero, we need to additionally assume the relevance conditions
that (i) the shock of interest is heteroskedastic across regimes, Cov(X2, D) ̸= 0, and (ii) the
causal effect of X on Y1 is nonzero, θ1 ̸= 0. For completeness, we review the calculations
leading to (23) in Appendix A.3.

4.2 Fragility under nonlinearity

We now argue that the simple linear identification argument fundamentally cannot be ex-
tended to nonparametric contexts.

Nonparametric identified set. We first show that the nonparametric model of
identification via heteroskedasticity yields a large identified set for the causal effects of X on
Y. To do this, we strengthen the independence and conditional mean assumptions (19)–(20)
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by imposing a specific model for the relationship between X and D:

X = σ(D)W, where W,D, and U are mutually independent, (24)

σ : R → R+ is a known function, and W has a known distribution that is symmetric around
0. This model would, for example, be consistent with the conditionally Gaussian model
X | D ∼ N(0, σ2(D)).

Proposition 4. Assume that (Y, D,W,X,U) satisfy the nonparametric factor model (18)
and identification assumption (24). Then there exists an alternative structural function
ψ̃ : R2 → Rn and a scalar random variable Ũ independent of (W,D,X) such that (Ỹ, D)
has the same joint distribution as (Y, D), where

Ỹ ≡ ψ̃(X, Ũ),

and such that ψ̃(−x, ũ) = ψ̃(x, ũ) for all x, ũ.

The proposition states that the identified set for ψ is so large that it always contains
a structural function ψ(x,u) that is symmetric in x around 0. In particular, we can never
rule out that the average marginal effect

∫
ω(x)(∂E[ψ(x,U)]/∂x) dx is zero when the weight

function ω(x) is symmetric around 0. Intuitively, the challenge is that D does not affect
the mean of X, only higher moments, so—without strong functional form restrictions on
the relationship between the outcomes and the shocks—we do not have enough information
to sign mean effects of shifts in the latent shock X. This holds even though we assume
that the econometrician knows exactly how D affects the dispersion of the X distribution.
Notice that the construction of the observationally equivalent symmetric structural function
in Proposition 4 only relies on a single (scalar) nuisance shock; hence, knowledge about the
true number of shocks does not ameliorate the identification failure (see Section 5 for further
discussion of this point).

A careful inspection of the proof of Proposition 4 reveals that the result is closely related
to a known issue with identification via heteroskedasticity in a linear context: while the vari-
ance of the shock of interest X must vary across regimes, we cannot simultaneously allow the
impulse responses of X to vary across regimes (see Lewis, 2024, Section 6.1, for a discussion
and references). However, in a nonparametric context this problem is even worse, since there
is no fundamental distinction between “coefficients” and “shock variances” in a general non-
linear model. A priori restrictions that certain “coefficients” are independent of the regime
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are only meaningful once we parametrize the model, which complicates the development of
an empirically useful nonparametric generalization of the identification approach.

Sensitivity of linear procedures. Because the nonparametric identified set is
large, we can expect estimation procedures based on linearity of the structural function to
fail to estimate causal objects in general. The next result implies that this is indeed the case
for the linear instrumental variable estimator (23) of Rigobon and Sack (2004) and Lewbel
(2012).

Proposition 5. Assume the additively separable structural model

Y = θ(X) + γ(U),

where θ : R → Rn, γ : Rm−1 → Rn, and we normalize E[θ(X)] = E[γ(U)] = 0. Suppose
that the independence assumption (19) holds, and let Z be given by (22). Suppose that the
variables (Y, Z,D) have finite second moments, and that the support of X is given by the
interval I ⊆ R (the interval may be unbounded, and could equal R). Suppose also that for
each j, θj (the j-th component of θ) is locally absolutely continuous on I, and that for some
x, x ∈ I, θj(x) is monotone for x ≤ x and for x ≥ x. Then

Cov(Y, Z) =
∫
ω̌(x)θ′(x) dx,

where
ω̌(x) ≡ Cov

(
1{X ≥ x}, θ1(X)(D − E[D])

)
. (25)

Proposition 5 shows that regressing Y onto the instrument Z yields a weighted average of
marginal effects, but with a weight function ω̌(x) that cannot be guaranteed to be positive.13

In fact, the weights even integrate to 0 in some cases, for example if θ1(x) = θ1(−x) and the
conditional distribution of X given D is symmetric around 0. In such cases, the instrumental
variable estimator erroneously estimates a zero causal effect of X on Yj for j ≥ 2 even if
θj(x) = βjx is a linear function with βj ̸= 0.

The weights can also be negative—and therefore cause the econometrician to get the sign
of the marginal effects wrong—even in the seemingly favorable setting where (unbeknownst
to the econometrician) the policy variable Y1 simply equals the shock of interest X, without

13This is not a special case of Proposition 3, since Z does not satisfy the nonparametric proxy assump-
tion (13).
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any nonlinearity or contamination by nuisance shocks, i.e., θ1(x) = x. Assume in addition,
as in Rigobon (2003), that the regime indicator D ∈ {0, 1} is binary and E[X | D] = 0.
Then a simple calculation shows that the weights in equation (25) equal

ω̌(x) = Var(D)
∫ ∞

x
[fX|1(v) − fX|0(v)]v dv = Var(D)

∫ x

−∞
[fX|0(v) − fX|1(v)]v dv, (26)

where fX|d(x) is the density of X conditional on regime D = d. Suppose the right (resp.,
left) tail of the X distribution is fatter (resp., thinner) in regime D = 1 than in regime
D = 0, meaning that fX|1(x) > fX|0(x) for x ≫ 0 and fX|0(x) > fX|1(x) for x ≪ 0. Then
it follows from equation (26) that ω̌(x) > 0 for x ≫ 0, while ω̌(x) < 0 for x ≪ 0. This
simple example shows that the instrumental variable estimator can easily generate negative
weights, even when it satisfies the exclusion and relevance conditions and the policy variable
is linear in the shock. To trust that the weights are positive, we would need to have quite
detailed information about the conditional shock density in the two regimes; simple moment
restrictions do not suffice.

Intuitively, the problem of negative weights comes about because the Rigobon (2003)
and Lewbel (2012) instrumental variable Z defined in (22) fails the proxy monotonicity
assumption discussed earlier in connection with Proposition 3. Because the only source of
exogenous variation is the regime indicator D, and this indicator does not affect the mean
of the latent shock X but only higher moments, it is generally impossible to construct any
proxy variable that is guaranteed to be monotone in X, unless we make strong assumptions
about the structural function.

If the model is not additively separable as assumed in Proposition 5, the instrumental
variables estimator can exhibit even more pathological behavior, in that it may not equal a
weighted average of marginal effects at all. As a simple example, consider a multiplicative
model Y = Xγ(U) with E[γ(U)] = 0 and impose the independence assumption (19). In that
model, E[Y | X] = 0, so the marginal effect function is identically zero, but Cov(Y, Z) =
Cov(X2, D) Cov(γ1(U),γ(U)) ̸= 0 in general, so the instrument erroneously estimates a
nonzero effect.

4.3 Silver lining: Testability of the linearity assumption

While the sensitivity of identification via heteroskedasticity to linearity of the structural func-
tion ψ is disheartening, at least the linear model (21) implies testable restrictions. Specifi-
cally, as noted by Rigobon and Sack (2004) and Wright (2012), for any d0, d1 in the support
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of D, the difference Var(Y | D = d1) − Var(Y | D = d0) = [Var(X | D = d1) − Var(X | D =
d0)]θθ′ should be a rank-1 matrix under linearity and the maintained independence assump-
tion (19). Other over-identification tests in more general linear models of identification via
heteroskedasticity are discussed in the review article by Lewis (2024). We are not aware of
any thorough analysis of the power properties of these tests against nonlinear alternatives.

5 The ugly: identification via non-Gaussianity

A second approach to identification in linear models in the absence of direct shock measures
is to assume that the structural shocks are mutually independent and non-Gaussian; see
Gouriéroux, Monfort, and Renne (2017), Lanne, Meitz, and Saikkonen (2017), and the
review article by Lewis (2024). Lewbel, Schennach, and Zhang (2024) propose a similar
approach to achieve identification in cross-sectional endogenous regressions in the absence of
external instruments. An earlier literature outside economics goes by the name independent
components analysis (ICA), see Kagan, Linnik, and Rao (1973, Chapter 10), Comon (1994),
and the textbook by Hyvärinen, Karhunen, and Oja (2001).

This section delivers ugly news regarding the sensitivity of this identification approach
to linearity of the structural function: once the linearity assumption is dropped, the non-
Gaussianity assumption is essentially vacuous; as a consequence, estimators based on non-
Gaussianity and linearity of the structural function can fail spectacularly even under mild
departures from linearity. What is worse, the linearity assumption is untestable in general.

5.1 Nonparametric version of the identification approach

As in Section 4, we consider the nonparametric factor model (18). However, unlike in the
case of identification via heteroskedasticity, we now do not observe any additional proxy
variables that aid in identifying the latent shocks. Instead, we hope to achieve identification
via restrictions on the distributions of the shocks.

Review of linear identification. Assume temporarily that the number of shocks
equals the number of observables, m = n, and that the structural function is linear:

ψ(x,u) = βx+ γu, β ∈ Rn, γ ∈ Rn×(n−1).
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Assume also the n shocks (X,U1, . . . , Un−1) are mutually independent, and at most one of
these shocks has a Gaussian distribution. We will refer to this model as the linear ICA
model. A deep result in probability theory, the Darmois-Skitovich Theorem, says that two
nontrivial linear combinations of independent variables cannot themselves be independent,
unless all the underlying variables are Gaussian. In the context of the linear ICA model, the
theorem implies that any two linear combinations ς ′Y and ς̃ ′Y of the data Y = βX + γU
can be independent if and only if these linear combinations equal two different shocks in the
model (up to sign and scale). Hence, the shocks in the model can be identified by searching
for those linear combinations of the observed variables that are independent; once we have
the shocks, we can then estimate their causal effects. See Hyvärinen, Karhunen, and Oja
(2001) and Lewis (2024, Section 4) for reviews of estimation procedures.

The abstract identification argument above can be made less mysterious through a
method of moments framework that exploits implications of shock independence for higher
moments of the data (Lewis, 2024, Section 4.4). Nevertheless, it is clear from both the ab-
stract argument and the more concrete moment-based approach that linearity of the struc-
tural function is being leveraged heavily.

5.2 Fragility under nonlinearity

Nonparametric identified set. Unfortunately, the mere assumptions that the la-
tent shocks are independent and non-Gaussian provide essentially no identification power in
a nonparametric context. The identified set under these assumptions is so large that nearly
any function of the data can be labeled a “shock”.

Proposition 6. Let Ỹ = Υ(Y) be a homeomorphic14 transformation of Y, with j-th element
denoted by Ỹj. For all j = 2, . . . , n, assume that the quantile function of Ỹj conditional
on Ỹj−1, Ỹj−2, . . . , Ỹ1 is continuous in the quantile and the conditioning arguments. Define
X̃ ≡ Ỹ1, and let {Ūj}n−1

j=1 be mutually independent uniform variables on [0, 1] that are also
independent of X̃. Then there exists a continuous function ψ̄ : Rn → Rn such that the
random vector

Ȳ ≡ ψ̄(X̃, Ū1, . . . , Ūn−1)

has the same distribution as Y.

Proposition 6 shows that the nonparametric factor model (18) is very under-identified,

14That is, continuous, one-to-one, and with a continuous inverse function Υ−1(·).
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even if we restrict the number of latent, independent shocks to equal m = n and impose
smoothness on the structural function ψ. Indeed, any element of almost any one-to-one trans-
formation Υ(Y) of the observables could be construed as a “shock” for some data-consistent
choice of structural function ψ. While the challenge of identifying nonlinear factor models is
well known in the broader literature (see the review by Jutten and Karhunen, 2003), it ap-
pears that the serious consequences of this fact for shock identification in macroeconometrics
has not been explored previously.

The fundamental issue is that non-Gaussianity of the shocks is a vacuous assumption in
the nonparametric setting: it is an innocuous normalization to assume that all shocks have
uniform distributions, since we can always nonlinearly transform any shock distribution to
the uniform distribution via the quantile function. In other words, we have severe identifi-
cation failure as in Proposition 6 even if the econometrician knows the exact distributions
of each shock. Hence, it is no accident that the identification argument in the ICA and
structural VAR literatures relies heavily on the linearity assumption: there is no nonlinear
equivalent of the Darmois-Skitovich Theorem.

If we allow for slightly less smoothness of the structural function ψ, then the identification
problem is even worse. As Gunsilius and Schennach (2023) note, any n-dimensional vector Y
can be represented as a nonlinear factor model (18) in a single latent shock X (so m = 1 and
U = 0) using a so-called space-filling curve (e.g., Hilbert curve) construction, though the
associated ψ function would not be one-to-one. Hence, without restrictions on the structural
function, we cannot rule out that the latent shock of interest X drives all the variation in
the n observed variables Y. Indeed, given a uniform random variable U on [0, 1], we can
generate an infinite number of independent uniform random variables {Vj} from the decimal
expansion of U = 0.u1

1u
1
2u

2
1u

1
3u

2
2u

3
1u

1
4u

2
3u

3
2u

4
1 · · · , and taking Vj ≡ 0.uj

1u
j
2 · · · (and hence an

infinite number of independent random variables with arbitrary distributions Fj by taking
the inverse transform F−1

j (Vj)).15

Sensitivity of linear procedures. Due to the nonparametric identification fail-
ure, we can expect identification approaches based on non-Gaussianity to be very sensitive to
exact linearity in the structural function. The following two simple examples illustrate such
sensitivity in two settings where the linearity assumption is untestable. Thus, identification

15This is a consequence of the fact that there exists a one-to-one function ϕ such that both ϕ and ϕ−1 are
measurable between the measurable spaces (M, BM ) and ([0, 1], B[0,1]), where M is any separable complete
metric space and BM is the Borel σ-algebra on M (Dudley, 2002, Theorem 3.1.1).
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via non-Gaussianity is not only fragile, it is also generally not falsifiable.

Example 3. Let the two latent shocks (X,U) have a bivariate standard normal distribution.
Let the two observed variables be given by

Y1 ≡ X + U, Y2 ≡ γ(X − U),

for an arbitrary measurable nonlinear function γ : R → R. We can interpret this setting as
being almost a linear ICA model, except that the second variable has not been transformed
quite correctly. In the above model, Y1 and Y2 are independent, and Y2 has a non-Gaussian
distribution.16 Hence, any linearity-based ICA procedure applied to the data (Y1, Y2) will
erroneously conclude that the first variable equals the first shock and the second variable
the second shock (up to the mean). Moreover, there is nothing in the data that can reject
the validity of the linear ICA assumptions. Notice the lack of continuity: even if γ(·) is only
slightly nonlinear, linear ICA procedures will conclude (asymptotically) that the first shock
contributes 100% of the variance of Y1, even though the true number is 50%.

This example illustrates how getting the transformation of Y2 slightly wrong can mess up
causal inference about the other variable Y1 (which is in fact linear in the true shocks). ■

Example 4. Consider a model of the form

Y1 = X + U, Y2 = X + γ(U),

where X and U are independent latent shocks. Appendix A.4 gives concrete choices of non-
Gaussian distributions of the shocks and a smooth γ(·) function such that Y1 and Y2 are
independent and both non-normal. Hence, as in the previous example, any linearity-based
ICA procedure applied to the data (Y1, Y2) will erroneously attribute all variation in Y1 to
the first shock and all variation in Y2 to the second shock. Note that in this example, both
of the true shocks (X,U) are non-Gaussian, and the only nonlinearity in the true structural
model is the relationship between Y2 and U . ■

In conclusion, linearity-based ICA identification procedures can be highly misleading
under departures from a linear model, as with identification via heteroskedasticity (but
unlike identification with observed shocks or proxies). In fact, the situation is arguably
worse than in Section 4, since even arbitrarily small structural nonlinearities can yield large
biases, and the linearity assumption is not testable in general.

16This is because the vector (X +U, X −U) has a joint normal distribution with uncorrelated components.
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6 Identification of average marginal effects

Extending the analysis in Section 3, we now consider the problem of estimating average
marginal effects with a pre-specified weight function when the shock of interest is observed.
We first focus on the case without control variables before extending the analysis to allow
for controls.

6.1 Identification without controls

We consider the setup from Section 3.1, but drop time subscripts to make it clearer that our
analysis applies to cross-sectional as well as time series settings. Let

g(x) ≡ E[Y | X = x] (27)

denote the conditional mean function from a nonparametric regression of the scalar outcome
Y onto the scalar variable X. We do not restrict the marginal distribution of X: it can
be continuous, discrete, or mixed. Let I ⊆ R denote a (possibly unbounded) interval that
contains the support of X. We are interested in summarizing g by reporting its weighted
average derivative, weighted by some pre-specified weight function ω. With some abuse of
notation, we still denote this weighted average derivative by

θ(ω) ≡
∫

I
ω(x)g′(x) dx,

as in Section 2, even though we don’t require that g(x) corresponds to some structural
function. To ensure that this object is well-defined, we assume that g is locally absolutely
continuous on I. Since (27) only defines g on the support of X, this requires us to extend
g to all of I in cases when there are gaps in the support of X, such as when X is discrete.
This can be done by linear interpolation: if P (X ∈ (a, b)) = 0 for some (a, b) ⊆ I, we set
g(x) = (g(b)−g(a))(x−a)/(b−a)+g(a) for x ∈ (a, b). If the distribution of X is discrete, this
defines the derivative g′ as the slope between adjacent support points (and the extension will
automatically be locally absolutely continuous provided that the spacing between adjacent
support points is bounded away from 0).

A regression-based approach to estimating θ(ω) first estimates the entire derivative func-
tion g′(·) nonparametrically (by, say, series or kernel regression), and then averages it using
the weights ω. The next result shows that we can alternatively estimate θ(ω) as a weighted
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average of outcomes, θ(ω) = E[α(X)Y ], where α is the Riesz representer of the linear func-
tional g 7→ θ(ω).

Lemma 1. Let ω(x) ≡ E[1{X ≥ x}α(X)]. Suppose that (i) the support of X is contained
in a (possibly unbounded) interval I ⊆ R; (ii) g is locally absolutely continuous on I; (iii)
E[|α(X)|(1 + |g(X)|)] < ∞ with E[α(X)] = 0; and (iv) there exists x0 ∈ I such that
E[|α(X)

∫X
x0

|g′(x)| dx|] < ∞. Then

E[α(X)g(X)] =
∫

I
ω(x)g′(x) dx. (28)

Analogous representations for θ(ω) are well-known in the literature if we additionally
assume that X is continuously distributed (e.g., Newey and Stoker, 1993, equation 2.6).
The representation is usually derived by directly applying integration by parts. Our proof
instead generalizes the proof of Stein’s lemma (Stein, 1981, Lemma 1), which allows us to
drop the requirement that X is continuously distributed and impose only very mild regularity
conditions, which essentially just require that both sides of equation (28) are well-defined.
In particular, absolute continuity of g is needed to ensure that θ(ω) is well-defined, and in
Lemma 4 in Appendix B, we show that if the tails of ω or the tails of g are monotone, then
condition (iv) of Lemma 1 holds provided the integral on the right-hand side of (28) exists.

Lemma 1 gives a recipe for constructing weighting-based estimators of θ(ω) for particular
choices of weight function ω by replacing the expectation in equation (28) with a sample
average and, if the function α is unknown, replacing α with an estimate.17 For instance, if
X is continuous, and we let ω(x) = fX(x) correspond to the density of X, so that θ(ω) =
E[g′(X)] is the (unweighted) average derivative, the required weighting is given by α(x) =
−f ′

X(x)/fX(x), leading to the estimator of Härdle and Stoker (1989) if one uses kernel
estimators to estimate the density and its derivative. If the identification condition (6) holds,
this estimator will estimate the average causal impact of increasing X by an infinitesimal
amount. To estimate the average impact of increasing X by a fixed amount δ (i.e., the
unweighted average causal effect), which corresponds to setting ω(x) = 1

δ

∫ x
x−δ fX(x) dx, let

α(x) = −fX(x)−fX(x−δ)
δfX(x) , replacing the derivative of the density by a discrete change. If we

set ω(x) = f 2
X(x), so that α(x) = −2f ′

X(x), and we use a leave-one-out kernel estimator
for the derivative of the density, we recover the famous density-weighted average derivative

17As we discuss in Section 6.2 below, recent results in the semiparametric literature suggest that rather
than picking between this weighting-based approach and the regression-based approach to estimation of θ(ω),
it may pay off to combine both of them to yield a “doubly-robust” estimator.
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estimator of Powell, Stock, and Stoker (1989). Finally, for ω(x) = E[1{X ≥ x}X], we
simply get α(x) = x, and Lemma 1 reduces to Proposition 1: this weighting scheme can be
estimated by linear regression. As the proofs of Propositions 2, 3 and 5 reveal, these results
are also special cases of Lemma 1.18

6.2 Identification with control variables

We now generalize the setup to allow for a vector of controls W. Consider the weighted
average derivative

θ(ω) ≡ E
[∫

IW
ω(x,W)g′(x,W) dx

]
,

where the expectation is over the marginal distribution of W, and g′ is the derivative with
respect to x of the conditional mean function g(x,w) ≡ E[Y | X = x,W = w].19 To ensure
this object is well-defined, we assume that for each w, the weights ω are zero outside the
interval Iw containing the conditional support of X given W = w, and that we can extend
g(·,w) to Iw such that g(·,w) is locally absolutely continuous on Iw, such as by linearly
interpolating across any gaps in the support.

Like in the case without covariates, a regression-based estimator of θ(ω) first estimates
the derivative of the regression function g′(x,w), and then averages the estimated derivative
function using the weights ω and the marginal distribution of the covariates. The next result
shows that we can alternatively estimate θ(ω) by taking weighted averages of the outcome.

Lemma 2. Let ω(x,w) ≡ E[1{X ≥ x}α(X,W) | W = w]. Suppose that conditional
on W, the following holds almost surely: (i) the support of X is contained in a (possibly
unbounded) interval IW ⊆ R; (ii) g(·,W) is locally absolutely continuous on IW; and (iii)
E[α(X,W) | W] = 0. Suppose also that (iv) there exists a function x0(W) ∈ IW such
that E[|α(X,W)

∫X
x0(W)

|g′(x,W)| dx|] < ∞; and that (v) E[|α(X,W)|(1 + |g(X,W)|)] < ∞.
Then

E
[∫

IW
ω(x,W)g′(x,W) dx

]
= E [α(X,W)g(X,W)] . (29)

As discussed in Section 6.1, the representation (29) is well-known if the distribution
of X is continuous conditional on W. The novelty of Lemma 2 is to drop the continuity
requirement and relax the regularity conditions.

18As a consequence, note that the assumption that Xt be continuous in Propositions 1 and 3 can be
dropped.

19Weighting by the marginal distribution of W is not restrictive, since weighting schemes that use other
forms of averaging across w can be recovered by defining ω appropriately.
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If X ∈ {0, 1} is a binary treatment variable, and we additionally assume that X is as
good as randomly assigned conditional on W, then g(1,w) − g(0,w) corresponds to the
conditional average treatment effect (ATE) for individuals with W = w. In this case, the
average derivative simplifies to

θ(ω) = E
[
(g(1,W) − g(0,W))

∫
IW
ω(x,W) dx

]
= E[(g(1,W) − g(0,W))α(1,W)P (X = 1 | W)],

which corresponds to a weighted average of conditional ATEs. By letting α(X,W) =
X/P (X = 1 | W) − (1 − X)/P (X = 0 | W), Lemma 2 recovers the classic result that
we can estimate the (unweighted) ATE by inverse probability weighting. If X is continuous
with density fX(x | W) conditional on W, letting α(x,W) = −f ′

X(x | W)/fX(x | W)
recovers the average derivative E[g′(X,W)].

For both of these special cases, there is a wealth of papers studying how to best implement
regression-based or weighting-based approaches to estimating θ(ω), or combinations of both.
Recent influential results in the cross-sectional literature (e.g., Chernozhukov, Escanciano,
Ichimura, Newey, and Robins, 2022; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey, and Robins, 2018) highlight the advantages of combining both approaches using the
Neyman orthogonal moment condition

θ(ω) = E[µ(X,W, g) + α(X,W)(Y − g(X,W))], (30)

where µ(X,W, g) = g(1,W) − g(0,W) for the ATE and µ(X,W, g) = g′(X,W) for the
average derivative. This moment condition is orthogonal in the sense that it is insen-
sitive to small perturbations in g, in contrast to the regression-based moment condition
θ(ω) = E[µ(X,W, g)]. As a result, an orthogonal method-of-moments estimator based
on (30) that plugs in first-stage estimates of g and α can be viewed as a debiased version of
the plug-in estimator utilizing the regression-based moment condition. Actually, the moment
condition (30) is not only orthogonal, but also doubly robust—insensitive to large perturba-
tions in either g or α so that the orthogonal method-of-moments estimator remains consistent
so long as any one of the first-stage estimators is consistent for α or g, even if the other es-
timator is inconsistent. For the binary treatment case, the orthogonal method-of-moments
estimator corresponds to the classic augmented inverse probability weighted estimator of
Robins, Rotnitzky, and Zhao (1994).

For i.i.d. data, a popular alternative to the orthogonal method-of-moments estimator is

35



to use cross-fitting (Chernozhukov, Escanciano, Ichimura, Newey, and Robins, 2022; Cher-
nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018).20 This allows
for regularity conditions that are weak enough to accommodate a variety of first-step estima-
tors of α and γ, including kernels, series, as well as lasso, random forests, or other machine
learning estimators, provided that these estimators converge sufficiently fast. Because of
this flexibility, the approach is known as debiased machine learning. Recent work by Cher-
nozhukov, Newey, and Singh (2022) and Hirshberg and Wager (2021) develops alternatives
to this approach that bypass the need to explicitly estimate the Riesz representer α.

These approaches all deliver estimators of θ(ω) that converge, under appropriate regular-
ity conditions, at the usual parametric rate (square root of sample size) even if the first-stage
estimators are based on complicated nonparametric or machine learning algorithms. Adapt-
ing these approaches to time series contexts with dependent data is an interesting area for
future research. But one may worry that even in the absence of covariates, given the small
sample sizes typically available in macroeconomic applications, estimates of average marginal
effects relying on machine-learning or nonparametric first-step estimates of the shock den-
sity and the structural function may yield estimates that are too noisy and sensitive to
the choice of first-stage tuning parameters. When covariates are needed to argue that the
observed variable X is exogenous, the data requirements become even more severe.

The practical challenges associated with fully nonparametric estimation motivates study-
ing what the simple OLS local projection (7) estimates when the true regression function is
nonlinear. Extending the analysis of Section 3.3, we now allow the researcher to control for
covariates more flexibly by considering the partially linear regression

Y = Xβ + γ(W) + residual, where γ ∈ Γ,

and Γ is a linear space of control functions that contains the constant function 1. This covers
the case with a linear adjustment by letting Γ = {a+ w′b : a ∈ R,b ∈ Rdim(w)} be the class
of linear functions of w, as well as the semiparametric partially linear model that lets Γ be a
large class of “nonparametric” functions. By the projection theorem, the estimand β in this

20Take a sample sum of the moment condition (30) over the first half of the sample, plugging in estimates
α̂2 and γ̂2 of α and γ constructed using the second half of the sample, and add to it a sample sum of the
moment condition over the second half of the sample, but where we plug in estimates α̂1 and γ̂1 from the
first half of the sample.
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regression is given by
β ≡ E[(X − π(W))g(X,W)]

Var(X − π(W)) , (31)

where π(W) ≡ argminγ0∈Γ E[(X − γ0(W))2] denotes the projection of X onto Γ (if X and
W are independent, the estimand (31) reduces to that in (8); we assume the projection
exists). We denote the true conditional expectation (the propensity score, if X is binary) by
π∗(W) ≡ E[X | W].

The next result uses Lemma 2 to generalize Proposition 1 to the case with covariates.

Proposition 7. Let ω∗(x,W) ≡ E[1{X ≥ x}(X − π∗(W)) | W], and suppose X has finite
second moments, and that Var(X − π(W)) > 0. Suppose that either (a) π = π∗; or else
(b) for some γ0, γ1 ∈ Γ, and some weights λ(x,w) such that

∫
λ(x,w) dx = π∗(w) + γ1(w),

E[g(X,W) | W = w] = γ0(w) +
∫
λ(x,w)g′(x,w) dx for almost all w.

Furthermore, assume that conditional on W, the following holds almost surely: (i) the
support of X is contained in a (possibly unbounded) interval IW ⊆ R; and (ii) g(·,W) is
locally absolutely continuous on IW. Finally, assume that (iii) E[

∫
|ω∗(x,W)g′(x,W)| dx] <

∞ and E[|g(X,W)(X − π∗(W))|] < ∞. Then the estimand (31) satisfies

β = θ(ω), where ω(x,W) ≡ ω∗(x,W) + (π∗(W) − π(W))λ(x,w)
Var(X − π(W)) ,

where, if condition (a) holds, we let λ(x,w) = 0.
The weights integrate to one: E[

∫
ω(x,W) dx] = 1. A sufficient condition for the weights

to be non-negative is that condition (a) holds, in which case ω∗(x,w) is hump-shaped as
a function of x for almost all w: monotonically increasing from 0 to its maximum for
x = π∗(w), and then monotonically decreasing back to 0.

To interpret this result, it is useful to first consider the case where the class Γ of control
functions is rich enough so that condition (a) holds. This is trivially the case, for instance,
if W just consists of a single set of fixed effects. In this case, we obtain an analogue of
Proposition 1: (partially) linear regression identifies a weighted average of marginal effects,
with hump-shaped weights—this holds regardless of the distribution of X, be it discrete,
continuous or mixed. If the conditional distribution of X given W is continuous, then the
weighting ω(x,W) = ω∗(x,W)/Var(X − π∗(W)) varies smoothly with x; if there are mass
points, as in the case of a discrete or mixed distribution, then the weight function jumps
discontinuously at the mass points. If the treatment X is discrete with support 0, 1, . . . ,
we recover the result in Angrist and Krueger (1999) that regression estimates a weighted
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average of the causal effects of increasing X by one unit,

β = E [∑∞
s=1 E[1{X ≥ s}(X − π∗(W)) | W](g(s,W) − g(s− 1,W))]

E [∑∞
s=1 E[1{X ≥ s}(X − π∗(W)) | W]] .

Now suppose that condition (a) is violated, because the specification for Γ is not suf-
ficiently flexible to model the true propensity score π∗(W). In general, this may lead to
omitted variable bias, as the partially linear model may not be sufficiently flexible to ac-
count for all confounding due to W. Condition (b) prevents this scenario, ensuring that
any bias due to confounding is accounted for. As a simple example of when the condition
holds, consider the case where the true conditional mean function has a multiplicative form:
g(X,W) = Xg′(W) + γ0(W), with γ0 ∈ Γ. The partially linear model is misspecified, be-
cause the marginal effect is not constant, but varies with W. But condition (b) holds with
γ1(w) = 0 and λ(x,w) = π∗(w)φ(x), where φ(x) is an arbitrary density function. Because
the marginal effect varies only with W but not with X, Proposition 7 simplifies to

β = E [(E[X2 | W] − π(W)π∗(W))g′(W)]
Var(X − π∗(W)) .

If π = π∗, we obtain a generalization of the Angrist (1998) result for binary treatments:
the weights are proportional to the conditional variance of X, Var(X | W). But if π ̸= π∗,
the weight function may be negative for some values of W. Consider, for instance, a panel
data scenario where Γ is linear, and W consists of unit and time fixed effects. Then the
assumption γ0 ∈ Γ amounts to a parallel trends assumption: in the absence of the treatment,
the average differences in outcomes for different units are constant and do not depend on the
time period. If the treatment effects are heterogeneous, so that g′(W) depends on the unit
and time period, then this two-way fixed effects regression still estimates a weighted average
of marginal effects, but with weights that are negative if E[X2 | W] < π(W)π∗(W). In the
context of a binary treatment and two-way fixed effects regressions, this result has been noted
in de Chaisemartin and D’Haultfœuille (2020) and Goodman-Bacon (2021). Proposition 7
generalizes this to an arbitrary treatment distribution and a general regression specification.

Another example where condition (b) of Proposition 7 holds is when X is bounded
below by some baseline value (say, 0), X ≥ 0, and the baseline outcome model is correctly
specified, g(0,W) ∈ Γ. Then condition (b) holds with γ0(W) = g(0,W), γ1 = 0, and
λ(x,W) = P (X ≥ x | W). In this case, the weights simplify to ω(x,W) = E[1{X ≥
x}(X − π(W)) | W]/Var(X − π(W)).
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Thus, if the marginal effects are constant, the partially linear model is doubly robust:
the regression estimand is consistent for this constant treatment effect so long as either
π∗ ∈ Γ or g(0,W) ∈ Γ, as noted, for instance, in Robins, Mark, and Newey (1992). But this
double robustness doesn’t fully extend to the case with heterogeneous marginal effects. If
the researcher gets the design (i.e., treatment assignment process) right, in the sense that
π = π∗, then the partially linear regression estimates an average marginal effect. However,
if the researcher gets it wrong, and only gets the outcome model under no treatment right,
so that only condition (b) of Proposition 7 holds, then weights on some of the true marginal
effects g′(X,W) may be negative, risking a sign-reversal. This asymmetry has been noted
by Goldsmith-Pinkham, Hull, and Kolesár (2024) for the case with a binary treatment X.21

Proposition 7 shows that the result is general. The upshot of this asymmetry is that in cases
where the treatment variable X is only conditionally exogenous—whether the data is cross-
sectional, panel, or time series—it pays off to conduct a sensitivity analysis with respect
to the functional form of the control specification, in addition to the standard sensitivity
analysis with respect to the set of controls.

7 Conclusion

We have shown that conventional linear methods for identifying causal effects in applied
time series analysis based on observed shocks or proxies are robust to misspecification: they
estimate a positively weighted average of the true nonlinear causal effects, irrespective of
the extent of nonlinearities in the underlying DGP. By contrast, identification approaches
that exploit heteroskedasticity or non-Gaussianity of latent shocks are highly sensitive to
violations of the assumed linear functional form of the structural model. Moreover, while
linear identification via heteroskedasticity provides some testable restrictions, identification
via non-Gaussianity is generally unfalsifiable despite the potential for severe biases.

Our results suggest that it is worthwhile for applied researchers to expend the effort in-
volved in constructing direct measures of shocks, or at least proxies that are credibly (approx-
imately) monotonically related to the latent shock of interest. While shock measurement via
narrative approaches or detailed institutional knowledge is admittedly highly work-intensive,
it affords an insurance against functional form misspecification which is not matched by the

21Goldsmith-Pinkham, Hull, and Kolesár (2024) also show that in regressions on multiple mutually exclu-
sive treatment indicators, the regression estimand on a given treatment contains an additional contamination
bias term corresponding to non-convex average effects of the other treatments.
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other identification approaches that we analyze. We leave other identification approaches
like identification via long-run or sign restrictions for future work.

When reporting impulse responses from linear specifications with observed shocks, we
recommend that researchers routinely report the implicit weight function, which is easy to
compute via standard regression software. If the weight function associated with conventional
local projections or VARs is deemed to be unattractive, it may be possible to reweight the
data to provide other causal summaries as discussed in Section 6, though further analysis is
required on the best practices for doing so in macroeconomic applications.

More broadly, we hope that our paper will boost the agenda spearheaded by Angrist and
Kuersteiner (2011), Angrist, Jordà, and Kuersteiner (2018), and Rambachan and Shephard
(2021) that seeks to draw lessons for macroeconometrics from the microeconometric treat-
ment effect literature. The nonparametric framework used in the treatment effect literature
contains useful lessons for empirical work in macroeconomics, even though explicit nonpara-
metric estimation or debiased machine learning methods are impractical due to the much
smaller data sets typical in macroeconomics.
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A Further results

A.1 Integrals of the weight function

The following lemma provides an identification result for integrals of the causal weight func-
tion ωX defined in Section 3.1.

Lemma 3. Let ωX be given by (9). Assume that E[X2
t ] < ∞. Let x, x be constants such

that −∞ ≤ x < x ≤ ∞. Then

∫ x

x
ωX(x) dx = Cov (max{min{Xt, x}, x}, Xt)

Var(Xt)
.

Proof. By Fubini’s theorem and linearity of the covariance operator,

∫ x

x
Cov(1{Xt ≥ x}, Xt) dx = Cov

(∫ x

x
1{Xt ≥ x} dx,Xt

)
.

Considering separately the three cases Xt < x, Xt ∈ [x, x], and Xt > x, it can be verified
that ∫ x

x
1{Xt ≥ x} dx = max{min{Xt, x}, x} − x.

Note that the lemma holds even if Xt has a discrete distribution (e.g., the empirical dis-
tribution). It implies in particular that the OLS-estimated weight function discussed in
Section 3.1 integrates to 1 across all x ∈ R in finite samples.

A.2 Identification with instruments under endogeneity

We here generalize the setup in Section 3.2 by allowing Xt to be endogenous. In particular,
we retain the nonparametric structural model (1), but drop the independence assumption (2).
Let

Xt = ξ(Zt, Vt) (32)

denote the first stage equation, where Vt is the part of Xt that is independent of Zt. We
assume that Zt is a valid instrument in the sense that Zt ⊥⊥ (Vt,Uh,t+h). We let

Ψh(x, v) ≡ E[ψh(x,Uh,t+h) | Vt = v]
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denote the marginal treatment response function. Note that if the shock Xt is binary, then
the difference Ψ(1, v) − Ψ(0, v) corresponds to the marginal treatment effect of Heckman
and Vytlacil (1999, 2005). If the independence assumption (2) holds, then the marginal
treatment response function doesn’t depend on v, and reduces to the average structural
function. Under endogeneity, the population version of the “reduced-form” regression of the
outcome Yt+h onto Zt has the slope coefficient

β̃h = E[(Zt − E[Zt])Ψh(Xt, Vt)]
Var(Zt)

. (33)

As in Section 6.2, we assume that that support of Xt conditional on Vt is contained in an
interval IVt . If there are gaps in the support of Xt, such as when Xt is discrete, we assume
that we can extend Ψh(·, v) to IVt such that the extension is locally absolutely continuous.

Applying Lemma 2 with Vt playing the role of the covariates W then yields the following
result:

Proposition 8. Consider the model in equations (1) and (32), with Zt ⊥⊥ (Vt,Uh,t+h). Sup-
pose that Zt has positive and finite variance. Suppose also that conditional on Vt, the follow-
ing holds almost surely: (i) the support of X is contained in a (possibly unbounded) interval
IVt ⊆ R; and (ii) Ψh(·, Vt) is locally absolutely continuous on IVt. Suppose also that (iii)
there exists a function x0(Vt) ∈ IVt such that E[|(Zt − E[Zt])

∫Xt
x0(Vt)

|Ψ′
h(x, Vt)| dx|] < ∞; and

that (iv) E[|Ψh(Xt, Vt)|(1 + |Zt|)] < ∞. Then the estimand (33) satisfies

β̃h = E
[∫

ω(x, Vt)Ψ′
h(x, Vt) dx

]
,

where ω(x, v) ≡ E[1{Xt ≥ x}(Zt − E[Zt]) | Vt = v]/Var(Zt).

Proposition 8 shows that the reduced-form regression of Yt onto Zt identifies a weighted
average of derivatives of the marginal treatment response function. The result generalizes
Theorem 1 of Angrist, Graddy, and Imbens (2000) in several ways: we don’t require differ-
entiability of the potential outcome function ψh, only of the marginal treatment response
function; Xt is not required to be continuous—it may be discrete or mixed; Zt is not re-
stricted to be binary; we impose no structure on the first-stage equation; and finally, we
impose only very weak moment conditions.

A sufficient condition for the weights ω(x, v) to be positive is the uniform monotonicity
condition that ξ(z, v) is increasing in z for almost all v: this corresponds to Assumption 4 in
Angrist, Graddy, and Imbens (2000) if z is binary. Then, since 1{ξ(z, v) ≥ x} is increasing

42



in z, ω(x, v) = Cov(1{ξ(Zt, v) ≥ x}, Zt)/Var(Zt) ≥ 0.
On the other hand, if Xt is exogenous, so that Ψ′

h(x, v) doesn’t depend on V , β̃h equals
a positively weighted average of marginal effects so long as the weights ω are positive on
average, E[ω(x, Vt)] = ω̃Z(x) ≥ 0, rather than for almost all realizations of Vt. Thus, non-
negativity of the weights ω̃Z(x) in Proposition 3 is implied by non-negativity of the weights
ω(x, v), but it is clearly a much weaker condition. In particular, as discussed in Section 3.2,
it is sufficient that ζ(x) = E[Zt | Xt = x] is monotone. This condition holds for many
measurement error models for Zt, even though the stronger uniform monotonicity condition
may be violated.

A.3 Identification via heteroskedasticity: linear case

Here we derive the linear identification result (23), following Rigobon and Sack (2004) and
Lewbel (2012). Note first that

E[Z | U] = E[(θ1X + γ1(U))(D − E[D]) | U]

= θ1E[X(D − E[D]) | U] + γ1(U)E[D − E(D) | U]

= θ1 Cov(X,D) + γ1(U)E[D − E(D)]

= 0.

Hence,
Cov(Y, Z) = θCov(X,Z) + Cov(γ(U), Z) = θCov(X,Z),

and the claim (23) follows, provided that Cov(X,Z) ̸= 0. The latter holds if θ1 ̸= 0 and
Cov(X2, D) ̸= 0, since

Cov(X,Z) = E[X(θ1X + γ1(U))(D − E[D])]

= θ1 Cov(X2, D) + Cov(X,D)E[γ1(U)]

= θ1 Cov(X2, D).

A.4 Details for Example 4

Let Ũ1 and Ũ2 be independent uniforms on [0, 1]. By the Box-Muller transform, the two
variables

Ỹ1 ≡
√

−2 log Ũ1 cos(2πŨ2), Ỹ2 ≡
√

−2 log Ũ1 sin(2πŨ2),
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have a bivariate standard normal distribution.
Define X ≡ log(−2 log Ũ1) and U ≡ log cos2(2πŨ2), so that X and U are independent

and non-Gaussian. By construction, the following two variables are independent:

Y1 ≡ log Ỹ 2
1 = X + U, Y2 ≡ log Ỹ 2

2 = X + γ(U),

where
γ(u) ≡ log (1 − exp(u)) , u < 0,

and we have used that exp(U) = cos2(2πŨ2) = 1 − sin2(2πŨ2). Note that in this example,
the shocks X and U do not have mean zero as commonly assumed in the literature, but this
is easily rectified by just subtracting off their means in the calculations.

A.5 Additional empirical estimates of causal weights

Complementing the results for government spending shocks in Figure 1 (Section 3.1), Fig-
ures 2 to 4 show estimated causal weight functions for several identified tax shocks, technol-
ogy shocks, and monetary policy shocks. The data is obtained from the replication files for
Ramey (2016), as discussed in Section 3.1. While many of the shocks yield approximately
symmetric weight functions, the Romer and Romer (2010) and Mertens and Ravn (2014)
tax shocks are both skewed towards tax cuts, while the Christiano, Eichenbaum, and Evans
(1999) and Gertler and Karadi (2015) monetary shocks are skewed towards interest rate cuts.
As discussed in Section 3.1, this is important to keep in mind when using impulse response
estimates to discipline structural models that feature asymmetries.
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Empirical weight functions: tax shocks
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Mertens & Ravn (ω>0: 0.369) Romer & Romer (ω>0: 0.286)

Leeper et al. (ω>0: 0.474)

Figure 2: Estimated causal weight functions ωX for tax shocks obtained from the replication files
for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations. “ω > 0”: total
weight

∫∞
0 ωX(x) dx on positive shocks. Papers referenced: Mertens and Ravn (2014), Romer and

Romer (2010), Leeper, Richter, and Walker (2012).
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Empirical weight functions: technology shocks
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Justiniano et al. IST (ω>0: 0.480) Justiniano et al. TFP (ω>0: 0.517)

Fernald (ω>0: 0.533) Francis et al. (ω>0: 0.541)

Figure 3: Estimated causal weight functions ωX for technology shocks obtained from the repli-
cation files for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations.
“TFP” = total factor productivity. “IST” = investment-specific technology. “ω > 0”: total weight∫∞

0 ωX(x) dx on positive shocks. Papers referenced: Justiniano, Primiceri, and Tambalotti (2011),
Fernald (2014), Francis, Owyang, Roush, and DiCecio (2014).
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Empirical weight functions: monetary policy shocks

0
.1

.2
.3

−10 −5 0 5
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Gertler & Karadi (ω>0: 0.295)

Figure 4: Estimated causal weight functions ωX for monetary policy shocks obtained from the
replication files for Ramey (2016), quarterly data. Horizontal axis in units of standard deviations.
“ω > 0”: total weight

∫∞
0 ωX(x) dx on positive shocks. Papers referenced: Christiano, Eichenbaum,

and Evans (1999), Romer and Romer (2010), Gertler and Karadi (2015).
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B Proofs

B.1 Auxiliary lemma

Lemma 4. Suppose that conditions (i)–(iii) of Lemma 1 hold. Suppose additionally that
for some x, x ∈ I, x ≤ x, it holds that either (a) α(x) only changes sign for x ∈ [x, x] and∫

I |ω(x)g′(x)| dx < ∞, or (b) g(x) is monotone for x ≤ x and for x ≥ x. Then condition
(iv) of Lemma 1 holds for any x0 ∈ [x, x].

Proof. Bound

E

[∣∣∣∣∣α(X)
∫ X

x0
|g′(x)| dx

∣∣∣∣∣
]

≤ E[|α(X)|]
∫ x

x
|g′(x)| dx+ E

[
1{X ≥ x}|α(X)|

∫ X

x
|g′(x)| dx

]

+ E
[
1{X ≤ x}|α(X)|

∫ x

X
|g′(x)| dx

]
.

The first term on the right-hand side is finite since g is absolutely continuous on [x, x]. Now
consider the second term on the right-hand side; the third term can be handled analogously.
Under condition (a), α(x) has the same sign for all x ≥ x, so the second term equals

∫
I
1{x ≥ x} |E[1{X ≥ x}α(X)]| |g′(x)| dx ≤

∫
I

|ω(x)||g′(x)| dx < ∞.

Under condition (b), since g(x) is monotone for x ≥ x,
∫X

x |g′(x)| dx = |
∫X

x g′(x) dx|, so that
the second term on the right-hand side in the first display equals

E

[
1{X ≥ x}|α(X)|

∣∣∣∣∣
∫ X

x
g′(x) dx

∣∣∣∣∣
]

= E [1{X ≥ x}|α(X)||g(X) − g(x)|]

≤ E[|α(X)g(X)|] + |g(x)|E[|α(X)|] < ∞.

B.2 Proof of Proposition 1

This is a special case of Proposition 3 with Z = ζ(X) = X. Lemma 3 implies that the
weights integrate to 1.

48



B.3 Proof of Proposition 2

Since g′
h(x) is locally absolutely continuous and E[|g′′

h(Xt)|] < ∞, by Stein’s lemma (Stein,
1981, Lemma 1),

E[g′′
h(Xt)] = E[Xtg

′
h(Xt)].

Since E[|gh(Xt)|] < ∞, another application of Stein’s lemma yields E[Xtg
′
h(Xt) + gh(Xt)] =

E[X2
t gh(Xt)]. Hence, Cov(gh(Xt), X2

t ) = E[Xtg
′
h(Xt)] = E[g′′

h(Xt)]. A third application
of Stein’s lemma yields E[g′

h(Xt)] = Cov(Xt, gh(Xt)). The result then follows from the
definitions (10)–(11).

B.4 Proof of Proposition 3

The representation of the estimand follows directly from Lemmas 1 and 4 with α(Xt) =
ζ(Xt) −E[Zt]. Claim (i) for the weights follows from a simple calculation. Claim (ii) follows
from Cov(1{Xt ≥ x}, ζ(Xt)) = Var(1{Xt ≥ x}){E[ζ(Xt) | Xt ≥ x] − E[ζ(Xt) | Xt < x]}.
For the last statement of the proposition, observe that for xU > xL, ω̃Z(xL) − ω̃Z(xU) is
proportional to E[1{xL < Xt < xU}(ζ(Xt) − E[Zt])], which is positive if x0 < xL < xU and
negative if xL < xU < x0.

B.5 Proof of Proposition 4

Let τ be a Rademacher random variable independent of (D,W,U), i.e., P (τ = 1 | D,W,U) =
P (τ = −1 | D,W,U) = 1/2. Since the distribution of W is symmetric around zero, W has
the same distribution as |W | × τ , and thus (X,U) has the same distribution as (|X|τ,U).
Let Ũ be uniform on [0, 1] independently of (D,W ), and let ϕτ : R → R and ϕU : R → Rm−1

be measurable functions such that (τ,U) has the same distribution as (ϕτ (Ũ),ϕU(Ũ)) (see
the discussion after Proposition 6 on the construction of such functions). Then it follows that
(X,U) has the same distribution as (|X|ϕτ (Ũ),ϕU(Ũ)), and the conclusion of the proposition
obtains by defining ψ̃(x, ũ) ≡ ψ(|x|ϕτ (ũ),ϕU(ũ)).

B.6 Proof of Proposition 5

Since γ(U) is independent of (X,D) with mean zero,

Cov(Y, Z | X) = Cov(γ(U), (θ1(X) + γ1(U))(D − E[D]) | X)

= Cov(γ(U), γ1(U)){E[D | X] − E[D]}.
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The law of total covariance therefore implies

Cov(Y, Z) = E[Cov(Y, Z | X)] + Cov(E[Y | X], E[Z | X])

= 0 + E[θ(X){E[Z | X] − E[Z]}].

The result now follows from Lemmas 1 and 4, with weights given by

ω̌(x) ≡ E[1{X ≥ x}{E[Z | X] − E[Z]}]

= Cov(1{X ≥ x}, E[Z | X,D])

= Cov(1{X ≥ x}, θ1(X)(D − E[D])),

where the last equality follows from

E[Z | X,D] = E[Y1 | X,D](D − E[D]) = θ1(X)(D − E[D]).

B.7 Proof of Proposition 6

Let Qj(τ | Ỹj−1, Ỹj−2, . . . , Ỹ1) denote the τ -th quantile of Ỹj conditional on Ỹj−1, Ỹj−2, . . . , Ỹ1.
Now construct an n-dimensional vector Y∗ = (Y ∗

1 , . . . , Y
∗

n ) as follows. First set Y ∗
1 ≡ Ỹ1.

Then for j > 1, let Y ∗
j ≡ Qj(Ūj−1 | Ỹj−1 = Y ∗

j−1, . . . , Ỹ1 = Y ∗
1 ). Standard arguments

yield that Y∗ has the same distribution as Ỹ. Consequently, Ȳ ≡ Υ−1(Y∗) has the same
distribution as Y = Υ−1(Ỹ). The mapping from (X̃, Ū1, . . . , Ūn−1) to Y∗ is continuous by
the assumptions on Qj, and so is the implied ψ̄ mapping by continuity of Υ−1.

B.8 Proof of Lemma 1

This result follows directly from Lemma 2 by letting W equal a constant.

B.9 Proof of Lemma 2

Observe

E
[∫

ω(x,W)g′(x,W) dx
]

= E
[∫

IW
E[1{X ≥ x ≥ x0(W)}α(X,W) | W]g′(x,W) dx

]
− E

[∫
IW
E[1{X < x < x0(W)}α(X,W) | W]g′(x,W) dx

]
= E

[∫
IW

1{X ≥ x ≥ x0(W)}α(X,W)g′(x,W) dx
]
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− E
[∫

IW
1{X < x < x0(W)}α(X,W)g′(x,W) dx

]
= E [1{X ≥ x0(W)}α(X,W)(g(X,W) − g(x0(W),W))]

− E [1{X < x0(W)}α(X,W)(g(x0(W),W) − g(X,W))]

= E [α(X,W)(g(X,W) − g(x0(W),W))]

= E [α(X,W)g(X,W)] ,

where the first equality uses the fact that since E[α(X,w) | W] = 0 by condition (iii),
ω(x,w) = −E[1{X < x}α(X,w) | W = w], the second equality uses Fubini’s theorem,
which is justified since both integrals exist by condition (iv), the third equality follows by
the fundamental theorem of calculus and condition (ii), the fourth equality collects terms,
and the last equality uses iterated expectations, which is justified since

E [|α(X,W)g(x0(W),W)|]

≤ E [|α(X,W)g(X,W)|] + E [|α(X,W)(g(X,W) − g(x0(W),W))|]

≤ E [|α(X,W)g(X,W)|] + E

[∣∣∣∣∣α(X,W)
∫ X

x0(W)
|g′(x,W)| dx

∣∣∣∣∣
]
< ∞,

by conditions (iv) and (v).

B.10 Proof of Proposition 7

Observe that under either condition (a) or condition (b),

E[(X − π(W))g(X,W)]

= E[(X − π∗(W))g(X,W)] + E
[
(π∗(W) − π(W))

∫
λ(x,W)g′(x,W) dx

]
.

Applying Lemma 2 with α(X,W) = X − π∗(W) and x0(W) = π∗(W) yields

E[(X − π∗(W))g(X,W)] = E
[∫

ω∗(x,W)g′(x,W) dx
]
.

Note that condition (iv) of Lemma 2 follows from a similar argument as in Lemma 4 (condi-
tional on W).
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Since (X − π(W)) is orthogonal to π(W) and to a constant function,

Var(X − π(W)) = E[(X − π∗(W))X] + E[(π∗(W) − π(W))π∗(W)]

= E[(X − π∗(W))X] + E
[
(π∗(W) − π(W))

∫
λ(x,W) dx

]
,

and it follows that the weights integrate to one. The last statement of the proposition can
be shown using the same argument as in the proof of Proposition 3.
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